TSG-SA WG4 MBMS ad-hoc Meeting #32bis
Tdoc S4-AHP159
11-13 October 2004, Newbury, UK

Source:
Ericsson, Digital Fountain, NEC, Vidiator

Title:
FEC Framework for MBMS streaming
Document for:
Agreement
Agenda Item:
4.4.1
1 Introduction

At SA4#32 it was agreed in the PSM session that SA4 should develop its own solution for how to do FEC for MBMS streaming. The agreed on requirements for this are collected in S4-040549 [8] and are quoted below. This document gives a proposal for a FEC architecture that meets these requirements. The solution is based on reusing the FEC building block created in the RMT WG as proposed by S4-040526 [9].

FEC Architecture requirements from [8]:

1. Any FEC architecture proposed shall be flexible in the FEC codes it supports. The FEC architecture shall at least allow the three SA4 FEC code candidates (Reed-Solomon, LDPC, Raptor). The Compact No Code FEC shall also be supported.

2. The commonality of the FEC Architecture for streaming and download delivery methods shall be maximized.

3. It shall be possible to use RTP as defined in the RFC 3550 without any FEC overhead.

4. The MBMS streaming client shall be able to process at least the systematic part of the flow

5. The FEC configuration of the protection level shall be configurable at a minimum on a session by session basis

6. The FEC architecture shall allow FEC codes that support adjustable source block-sizes for efficiency

7. It shall be possible to apply FEC to different media streams of an MBMS session in different configurations with the possibility to not use FEC at all for selected media streams (e.g. FEC is applied to audio but not to video or vice versa)

8. It shall be possible for a terminal at any time to start decoding and rendering a media stream within a yet to be defined time limit in the order of a few seconds after the reception of the first media packets of the corresponding media stream

9. Variable length packets shall have an only limited impact onto the overall performance

2 Solution Overview

A high level overview of the architecture is provided in Figure 1, grey boxes are already present, the black ones are new and correspond to the parts of the FEC sender and FEC receiver, and dashed boxes are optionally used, like SRTP [3]. The source blocks are created from the stream of source RTP packets containing the original data that will be sent to the receiver. The stream of repair RTP packets are created from the source blocks and then sent in a separate RTP stream. The FEC sender configures and determines the amount of original data added to a source block, thus controlling the delay created before FEC decoding is possible, and the protection level employed by selecting the number of repair RTP packets containing repair symbols to be transmitted.

As shown in Figure 1, the FEC sender in the FEC tagging step appends an “FEC tag” to the source RTP packets to indicate which source block they are part of and where they fit into the source block, and the FEC sender also changes the RTP payload type to indicate that the FEC tag has been appended. This is explained in more detail in Section 4.1. The FEC receiver uses the FEC tag in a received source RTP packet to determine which source block it belongs to and how the source RTP packets shall be placed in the source block. When the FEC receiver detects missing source RTP packets it can use the repair RTP packets to decode the missing packets.

[image: image1.wmf]

Media

RTP

packetization

RTP

Processing

MBMS transport

UDP

UDP

UDP

UDP

FEC De

-

tagging

FEC Encoding

& Packetization

RTP

Processing

RTP

Processing

RTP

Processing

Media

RTP De

-

packetization

FEC

Decoding

FEC

Tagging

FEC De

-

tagging

FEC

Depacketization

Sender

Receiver

SRTP

SRTP

SRTP

SRTP

Figure 1: Schematic overview of data flows
The FEC sender adds complete RTP packets to the source block. The FEC sender may also add other things to the source block, such as the lengths of the RTP packets in the source block, that help the FEC receiver delineate the source RTP packets in the source block when they are recovered. That way the FEC receiver, after reconstructing an RTP packet in the source block using received repair RTP packets, can pass complete RTP packets on for RTP payload depacketization prior to media decoding.

When adding the FEC tag, the FEC sender determines how the source RTP packet will be placed into the source block. However the actual generation of the source block and FEC encoding is performed later. The FEC tagging of the original data happens prior to the RTP stack processing, to ensure that the RTP and RTCP information is correct. The RTP stack processing consists of the RTP operations like setting RTP header fields that are not payload specific (sequence number, padding, etc.) and gathering packet statistics for RTCP (bytes sent, number of packets). If the RTP stack processing were to occur before the FEC tagging then discrepancies between the sent packet stream and RTCP SR packets would be created. Also the data that goes into the source block must be the original source RTP packet information that would have been sent if there were no FEC used as otherwise sequence numbers or other vital information could be erroneous, and thus RTP processing and then FEC de-tagging must be performed prior to FEC encoding. These are the reasons for the split processing between FEC tagging and FEC encoding.

After the RTP processing the FEC sender will perform the FEC de-tagging of the RTP packet to form the original RTP packet as data in the source block it will do the FEC encoding on. This is performed using the same process the FEC receiver later will use; removing the FEC tag, changing the RTP payload type field, and then copy the RTP packet into the source block according to the FEC tag information. When all original RTP packet data in the source block is in place the FEC encoding of the source block is performed. The resulting repair symbols are placed into what are called repair RTP packets. Each repair RTP packet consists of an RTP header, with a FEC repair data payload. The FEC repair data payload format (see section 4.3) consists of the FEC payload ID identifying one or more repair symbols, followed by the repair symbols themselves. The repair RTP packets are sent to the receivers using a separate RTP stream.

The usage of a separate repair RTP session for the repair RTP packet stream allows for the greatest flexibility and simplifies the handling. The benefit of a separate repair RTP session is that one can use a different multicast address and/or port than is used for the original RTP session. Using a separate address for the repair session provides the receiver and network nodes the flexibility to easily filter or only distribute FEC information to the receivers actually desiring it. If there is no need to separate the repair RTP packets from the source RTP packets the repair session can be identified with a different port number than the original session on the same multicast address. The network overhead of using an extra RTP session is minimal, and consists only of the bandwidth used for the RTCP sender reports.

The FEC receiver combines the information from the original session and the repair session to try to repair losses when they occur. The data from the original session is placed into a source block based on the FEC tag (see section 4.1). The received repair symbols in the RTP packets are also associated with the source block (see section 4.3), and when sufficient information is received, the decoder can reconstruct missing source RTP packets if any, up to what is achievable with what is received.

A FEC receiver will determine the FEC configuration and mechanisms as follows.

· The tagging of the original RTP packet is indicated in the original media session's declaration (in SDP) and will show up as yet another RTP payload type. The RTP payload type declaration for the tagging format will indicate any parameters it needs.

· The FEC encoding usage and its multiplexing is indicated by declaring a separate repair RTP session, i.e. an extra "m=" block, that defines the repair RTP session with transport protocol, address, and port. The repair session is proposed to be bound to its original session with the usage of grouping of media lines (RFC 3388) and a new grouping attribute.

· The actual FEC encoding used and its relevant parameters are indicated by the definition of the RTP payload type for the FEC payload in the repair RTP session. If there is need, it is possible to use multiple configurations of the FEC encoding, using different RTP payload types. However this usage is expected to be limited.

3 Motivation for the proposal

The motivation for performing all FEC operations after RTP packet reception is to allow the usage of SRTP [3] or other RTP profiles, and to ensure that any RTCP feedback reflects the links. Due to the potential of denial of service (DoS) attacks on the receiver through the FEC code, there is a need to allow the usage of authentication and integrity checks of packets. FEC usage is vulnerable to two types of DoS attacks, the first is the modification of one or more FEC repair packets, which may result in errors in source blocks after reconstruction. The second attack overloads the receiver through processing or memory usage in FEC decoding due to modified repair data. Therefore it seems prudent to allow for SA3's working assumption to use SRTP for transmission protection.

Performing the FEC encoding operation after the RTP stack processing on the sender side, i.e. FEC decoding before the RTP stack processing at the receiver, would result in the RTCP feedback (if used in future releases) reflecting the channel after FEC decoding and thus the actual link conditions would be hidden. However, performing the FEC decoding after the RTP & RTCP processing does not necessarily limit a sender's capability to determine the post FEC status. If feedback gives enough details about loss patterns, the sender can calculate how well the FEC will work in recovering missing packets.

The decision to multiplex original data and the FEC repair data on two different streams is necessary to avoid problems with the original stream. Some RTP payload formats use the RTP sequence number to determine order of presentation of the data to the media decoder and other functionalities. The arbitrary insertion of repair data into that stream would complicate this operation, and can even in some cases prevent operation (T.140 RTP payload format [4]). The decision to use different RTP sessions for the two streams is based on the desire to be able to send FEC repair data on a different multicast address then the multicast address of the original data, thus allowing for selective usage of the FEC repair stream.

The proposed RTP session based multiplexing has the following properties:

Advantages:

· Allow for feedback of the traffic reception using RTCP

· No limitation on the type of RTP payload formats that can be used

· No modification of existing RTP stack implementation required

· If an FEC decoder for streaming becomes only an optional and not a mandated feature, a client not having implemented the FEC decoder can easily reconstruct original RTP packets from an FEC encoded transmission by just removing the FEC payload ID. Note that this does not introduce any backward compatibility issues since MBMS is introduced in 3GPP R6 for the first time.

Disadvantage:

· Small increase in overhead due to RTCP Sender reports for the FEC stream.

4 RTP Solution details

4.1 Common details

This solution will be able to reuse any of the FEC codes defined for the FEC building block [1]. In particular, it can be used together with any of the FEC codes currently discussed within SA4. . RFC 3452 [1] defines the following information that needs to be transferred from the sender to the receiver to make any FEC code for the RMT framework to function:

· FEC encoding ID. This may be different for the source RTP packets and the repair RTP packets.

· FEC instance ID, if certain encoding IDs are used

· FEC payload ID. This is defined by the FEC encoding ID and FEC instance ID. The FEC Payload ID appended as a tag to the source RTP packets may be different than the FEC Payload ID used in the repair RTP packets.

· FEC object transmission information beyond the FEC Encoding ID and FEC Instance ID. This shall include the length in bytes of the FEC Payload ID appended as the FEC tag to source RTP packets so that a receiver that does not support the FEC decoder can detag the source RTP packets. This is defined by the FEC Encoding ID and FEC instance ID.

The FEC encoding ID, FEC instance ID and other FEC object transmission information is most appropriate to connect to the RTP payload type. That way it is possible to use a few different FEC encoding ID or FEC instance IDs if needed. The FEC payload ID is necessary to send in each repair RTP packet in connection to the FEC encoding symbols transferred. The format of an FEC payload ID is defined by each FEC code, and identified through the FEC encoding ID and FEC instance ID (for underspecified codes).

[image: image2.wmf]

Source Block Number

Source Block Length

Encoding Symbol ID

Figure 2: Example of an FEC Payload ID as specified in [1] for FEC Encoding ID 129
For example the FEC payload ID for FEC encoding ID 129 (“Small Block Systematic FEC Codes”, see Figure 2) consists of a 32-bit Source Block Number that identifies the source block. The 16-bit field Source Block Length provides the length of each source block which can vary between blocks. Finally the 16-bit Encoding Symbol ID identifies the encoding symbols generated from the source block. Note that the FEC Payload ID structure shown in Figure 2 is just an example. Certain FEC codes would allow a more compact FEC Payload ID requiring less bits.

The solution proposed in this document defines two different RTP payload formats that contain different types of information that are used in the FEC mechanism: one for tagging the original RTP packets with a FEC payload ID to identify them as original source symbols; a second format for carrying repair symbols and their FEC payload ID as a RTP payload.

The source symbols are carried in RTP packets that will be of variable length. The FEC codes capable of using this format needs to be able to handle this property. In most cases intelligent construction of source blocks and symbols based on the provided variable length RTP packet, should resolve this issue.

The FEC code that uses multiple symbols in each RTP payload must be capable of identifying the individual symbols based on a single FEC payload ID and the total payload length. No framing for the individual symbols in a multiple symbol payload is provided at RTP payload format level, but may be provided in the FEC payload ID. However this should not be an issue for a FEC code that uses a fixed symbol size.

The source RTP packets that can be included in a source block are not limited by their SSRC. Any SSRC from the source RTP session can be added to a source block and the SSRC used to send out the FEC symbols are not connected to the SSRC of the protected packets. Instead the SSRC of the recovered packet is available in the RTP header of the recovered packet.

4.2 Payload format for tagging of original RTP packets

The original RTP packet tagging format is used to add a FEC payload ID field as a tag to an RTP packet that is going to be FEC protected. This enables the FEC sender and receiver to correctly place the source (original) information into its FEC coding process.

Due to RTP and RTCP considerations, the process of adding the tag might seem more complicated at first glance than it really is. By adding the tag prior to the RTP processing, the RTCP information is ensured to be correct. The tagging process only changes the RTP header's payload type (PT) field. The original PT value is replaced by another value that indicates to the receiver that the tag is present. The payload type of the tag is also bound to the original payload type in the SDP, thus the receiver can determine what the original PT was. For example if two original RTP payload types 95 and 96 would be used in a session, the session SDP would define two more payload types, for example 97 and 98, where 97 would indicate that the packet payload is the tagging payload format and that the original payload type is 95. Similarly PT=98 would mean the tagging payload with original payload type 96.

[image: image3.wmf]

RTP Header

RTP Payload

FEC Payload ID

FEC Tag

Replaced PT

(Payload type)

FEC source data

that is going to be

protected

Figure 3: Principle of RTP tagging format

Figure 3 shows the basic principle of the FEC tagging payload format, the original RTP packet, with a replace payload type, followed by the FEC payload ID as a tag. The complete original RTP packet, with header and payload in unchanged form will be included in the source block that is FEC protected.

A sender needs to perform the following operations in the handling of the original data:

1. Start with a RTP payload and the size the RTP header will consume for the packet being sent with this payload. The size can easily be derived from the RTP profile, any application set features, like CSRC list, or extension header. This allows the sender to determine the size of the RTP packet without the tag.

2. The sender reserves the space needed for the RTP packets information into the FEC code's source block. That way the FEC payload ID information is determined, for example the Source Block Number, the Source Block Length and the Encoding Symbol ID if FEC encoding ID=129 is used.

3. The FEC payload ID (the tag) is added to the end of the RTP payload. The tag size is dependent on the FEC code.

4. To allow the receiver to identify the original RTP payload type and indicate that the tag is present, the RTP PT is changed from its original value to the value that indicate the combination of original payload format and the FEC tagging payload format.

5. RTP payload and the corresponding payload defined RTP header values (marker bit, timestamp) are sent to the RTP stack. The RTP stack adds the remaining RTP header fields and processes the packet for inclusion in RTCP reports.

6. After RTP processing, a copy of the packet being sent to the receiver(s) is de-tagged; The FEC payload ID is removed from the RTP packet, and the RTP payload type is replace with the original PT.

7. The de-tagged RTP packet is placed in the correct source block in the correct place according to the tag (FEC payload ID).

8. When a source block is complete, the FEC encoder will generate repair symbols from the source block and place these into repair RTP packets.

The receiver's operations when receiving a tagged original RTP packet are the following:

1. The tag (FEC payload ID) is removed from the RTP packet and stored.

2. The RTP payload type is replaced with the original PT based on the received PT.

3. The original packet is forwarded to RTP receiving entity, in Figure 1 the RTP Depacketization. Another copy is forwarded together with the tag to the FEC decoder.

4. FEC decoder places the RTP packet into the source block according to the tag.

4.3 Payload format for FEC symbols

An RTP payload format is needed to encapsulate the repair FEC information between sender and receiver. In theory the FEC stream would not need to be encapsulated in RTP at all unless the transport protocol behavior is desired. However if one desires to allow the receiver to monitor how much data is being lost in bytes and allow for feedback in the future using RTCP, the usage of RTP is desirable. It also avoids the need to define a new transport protocol, although some reduction in overhead could be achieved in that case.

[image: image4.wmf]

RTP Header

FEC encoding symbol

FEC Payload ID

Content and Size

of FEC payload

ID is dependent

on FEC encoding

and instance ID.

Figure 4: RTP payload structure for FEC encoding symbols
The RTP payload format for a repair RTP packet consists of the FEC payload ID (size dependent on FEC code) followed by one or more FEC encoding symbols (repair symbols). The symbol sizes may vary depending on the FEC code. The FEC payload IDs are used to bind original source RTP packets to a source block, and these repair RTP packets in turn to that source block. The RTP header information related to the payload is set in the following way:

Marker bit:
The marker bit shall be set 1 for the last repair RTP packet sent for each source block, and otherwise set to 0.

Timestamp:
The timestamp rate shall be 10 kHz and shall be set to a time corresponding to the packet's transmission time. The timestamp value has no use in the actual FEC repair process and is only set to a value to produce reasonable resolution for arrival measuring and jitter calculation.

Sequence number: Is set in accordance with RFC 3550 [2]. The sequence number is primarily used to detect losses of the repair RTP packets. All repair RTP packets for a source block should be sent in consecutive order, and be complete before starting the transmission of the next source block.

Payload type (PT): Is dynamically allocated using an out-of-band signaling mechanism. The PT is used to determine the FEC parameters for the payload. The FEC encoding ID, FEC instance ID, and any additional FEC object transmission information is all determined through the PT.

SSRC:
The SSRC is only used for RTP/RTCP mechanism and not at all by the RTP payload format. Packets with different SSRC values may be associated with the same source block.

The FEC Payload ID is expected to be fixed in size for a given PT, i.e. for a given FEC encoding ID. However, as this is defined by the FEC encoding ID instantiation it may be of variable size, but the length discovery must then be defined within the FEC payload ID. The size of the symbols are also dependent on the FEC encoding ID and FEC instance ID.

The receiver operations when receiving a repair RTP packet are the following:

1. Depacketize the repair symbols contained in the repair RTP packet

2. If enough repair symbols have been received to recover missing original RTP packets of the source block, FEC decode those missing source RTP packets and pass them to the RTP depacketization process.

5 Signalling

The two different RTP payload formats each need a media type to identify them and this also defines their respective set of parameters.

5.1 Registration of media type application/rtp.mbms.fec.symbols for carrying FEC symbols

Type name: application

Subtype name: rtp.mbms.fec.symbols

Required parameters:

FEID:
The FEC Encoding ID used in this instantiation. Expressed either as an integer or a string without white space.

Optional parameters:

FIID:
The FEC Instance ID used in this instantiation. Expressed either as an integer or a string without white space.

FOTI:
The additional FEC object transmission information if any that the FEC instantiation uses as defined by the FEID and FIID. The content is expected to be binary data but is not necessarily so, however it shall always be BASE64 encoded in the parameter value.

Encoding considerations:

The binary parameter FOTI shall be encoded using BASE 64 [5]. This format is a binary one, however as it is restricted to usage over RTP, no special considerations are needed.

Restrictions on usage:

This format is only defined for transfer over RTP [RFC3550].

Security considerations:

This format carries FEC encoding symbols that are used to recover lost packets. As the FEC codes can result in fairly complex receiver calculations and memory usage there is a potential for Denial of Service attacks, but also corruption of the receiver data. Thus appropriate protections using authentication and integrity checks should be employed. See also section 7 of RFC 3452.

Interoperability considerations:

The greatest interoperability issue with this format is that it supports any FEC encoding that follows the rules of RFC 3452. Thus the issue is to ensure that both sender and receiver are capable of using the same FEC codes.

Published specification:

3GPP Technical specification TS 26.346

Applications which use this media type:

MBMS terminals capable of receiving streaming media.

Additional information:

Magic number(s): N/A

File extension(s): N/A

Macintosh File Type Code(s): N/A

Person & email address to contact for further information:

Magnus Westerlund (magnus.westerlund@ericsson.com)

Intended usage:

COMMON

Author:

3GPP SA4

Change controller:

3GPP TSG SA

5.2 Registration of media type audio, video, or text/rtp.mbms.fec.tag

Type name: audio, video, or text

Subtype name: rtp.mbms.fec.tag

Required parameters:

opt:
The original payload type (OPT) of the media that is tagged by this instantiation of the format. This is an integer which range depends on the RTP profile in use, but commonly 0-127.

rate:
An integer value, equal to the rate value for the payload type specified by "opt".

FEID:
The FEC Encoding ID used in this instantiation. Expressed either as an integer or a string without white space.

Optional parameters:

FIID:
The FEC Instance ID used in this instantiation. Expressed either as an integer or a string without white space.

FOTI: The additional FEC object transmission information if any that the FEC instantiation uses as defined by the FEID and FIID. The content is expected to be binary data but is not necessarily so, however it shall always be BASE64 encoded in the parameter value.

Encoding considerations:

This format is a binary one, however as it is restricted to usage over RTP, no special considerations are needed.

Restrictions on usage:

This type is only defined for transfer over RTP [RFC3550].

Security considerations:

This format carries data and instruction used in FEC decoding. Thus alteration or insertion of packets can cause wide spread corruption of recovered data or denial of service through computation or memory consumption. Thus authentication and integrity protection of the format is appropriate.

Interoperability considerations:

The greatest interoperability issue with this format is that it supports any FEC encoding that follows the rules of RFC 3452. Thus the issue is to ensure that both sender and receiver are capable of using the same FEC codes.

Published specification:

3GPP Technical specification TS 26.346

Applications which use this media type:

MBMS terminals capable of receiving streaming media.

Additional information:

Magic number(s): N/A

File extension(s): N/A

Macintosh File Type Code(s): N/A

Person & email address to contact for further information:

Magnus Westerlund (magnus.westerlund@ericsson.com)

Intended usage:

COMMON

Author:

3GPP SA4

Change controller:

3GPP TSG SA

5.3 Binding of FEC and Original data session

The binding of the repair RTP session to the original RTP session carrying the original data is an important function. The “grouping of media lines” framework as described in [6] provides all features for binding the repair RTP session to the RTP session carrying the original data. In order to use this framework only a new grouping semantics for the FEC framework needs to be defined. Note that the semantic is not limited to the scope of 3GPP. For instance it can also be applied in the context of ULP [7]. Therefore, it is proposed to define the new grouping semantic within IETF.

5.4 Mapping the Media types to SDP

The information carried in the MIME media type specification has a specific mapping to fields in the Session Description Protocol (SDP) [6], which is commonly used to describe RTP sessions. When SDP is used to specify sessions employing the AMR-WB+ codec, the mapping is as follows:

· The Media type (application, audio, video, or text) goes in SDP "m=" as the media name.

· The Media subtype (payload format name) goes in SDP "a=rtpmap" as the encoding name. The RTP clock rate in "a=rtpmap" SHALL be 10000 for application/rtp.mbms.fec.symbols, and according to the rate parameter for x/rtp.mbms.fec.tag.

· Any remaining parameters go in the SDP "a=fmtp" attribute by copying them directly from the MIME media type string as a semicolon separated list of parameter=value pairs.

These payload formats are only intended to be used in declarative SDP use cases.

5.5 Example

An example of how an SDP could look for a session containing two media streams and FEC streams for each. The FEC streams are associated with the original stream using grouping of media lines solution. The grouping semantics "FEC" is a so far fictive one that would indicate that the media lines are associated with each other as being primary and repair data.

In this example we have assumed an audiovisual stream, using 56 kbps for video and 12 kbps for audio. We further assume that we send redundant packets for the video part at 6 kbps and redundant packets for the audio part at 3 kbps. Hence, the total session bandwidth is 56+6+12+3 = 77 kbps.

v=0
o=ghost 2890844526 2890842807 IN IP4 192.168.10.10
s=3GPP MBMS Streaming SDP Example
i=Example of MBMS streaming SDP file
u=http://www.infoserver.com/ae600
e=ghost@mailserver.com
c=IN IP4 224.1.2.3
t=3034423619 3042462419

b=AS:77

a=group:FEC 1 2

a=group:FEC 3 4
m=video 4002 RTP/AVP 97 96

b=AS:56

a=mid:1
a=rtpmap:96 H263-2000/90000
a=fmtp:96 profile=3;level=10
a=framesize:96 176-144

a=rtpmap: 97 rtp.mbms.fec.tag/90000

a=fmtp:97 opt=96; FEID=129;FIID=12435;FOTI="1SCxWEMNe397m24SwgyRhg=="
m=application 4004 RTP/AVP 100

b=AS:6

b=RS:300

b=RR:0

a=mid:2
a=rtpmap: 100 rtp.mbms.fec.symbols/10000

a=fmtp:100 FEID=129;FIID=12435;FOTI="1SCxWEMNe397m24SwgyRhg=="
m=audio 4006 RTP/AVP 99 98

b=AS:12

b=RR:0

b=RS:600

a=mid:3
a=rtpmap:98 AMR/8000

a=fmtp:98 octet-align=1

a=rtpmap: 99 rtp.mbms.fec.tag/8000

a=fmtp: 99 opt=98;FEID=129;FIID=12435;FOTI="1SCxWEMNe397m24SwgyRhg=="
m=application 4008 RTP/AVP 101

b=AS:3

b=RR:0

b=RS:200

a=mid:4
a=rtpmap: 101 rtp.mbms.fec.symbols/10000

a=fmtp:101 FEID=129;FIID=12435;FOTI="1SCxWEMNe397m24SwgyRhg=="
6 How it addresses the Requirements

The following FEC Architecture requirements are specified in [8]:

1. Any FEC architecture proposed shall be flexible in the FEC codes it supports. The FEC architecture shall at least allow the three SA4 FEC code candidates (Reed-Solomon, LDPC, Raptor). The Compact No Code FEC shall also be supported.

Answer: Yes, any FEC code that fulfils the RFC 3452 requirements and is systematic and that can handle variable length source blocks and variable length source RTP packets is suitable. Although support for the Compact No Code FEC can and is provided, it is superseded by the stronger requirement 3 below and in this sense this is a superfluous requirement. Furthermore, even when the sender uses an FEC code, if the receiver doesn’t support the FEC decoder then by the answer to requirement 4 the receiver can still receive the original source RTP packets and simply discard the repair RTP packets containing FEC encoding symbols.

2. The commonality of the FEC Architecture for streaming and download delivery methods shall be maximized.

Answer: This solution uses the FEC building block and also is capable of reusing the same or similar FEC codes as download.

3. It shall be possible to use RTP as defined in the RFC 3550 without any FEC overhead.

Answer: If no FEC is desired to be used, it can be used without any problems as will be indicated in the SDP for the session.

4. The MBMS streaming client shall be able to process at least the systematic part of the flow.

Answer: To enable a receiver to use the sent source RTP packets when FEC codes are used at the sender and the corresponding FEC decoder is not supported by the receiver, the receiver must simply de-tag the packets, which consists of a replacement of the payload type field in the RTP header, and removing a certain number of bytes, i.e. the FEC Payload ID, from the end of packet. The payload type and the length of the FEC Payload ID is part of the information that the receiver obtains in the SDP.

5. The FEC configuration of the protection level shall be configurable at a minimum on a session by session basis.

Answer: The set of possible protection levels is mostly dependent on the FEC code, and there is nothing in the architecture to prevent changing the protection level even down to the granularity of between source blocks in the same session. Different FEC configurations may even be used in the same RTP session, with the cost to keep both in memory at the same time.

6. The FEC architecture shall allow FEC codes that support adjustable source block-sizes for efficiency.

Answer: This solution sets no limitations on the FEC code in this respect.

7. It shall be possible to apply FEC to different media streams of an MBMS session in different configurations with the possibility to not use FEC codes at all for selected media streams (e.g. FEC is applied to audio but not to video or vice versa).

Answer: The solution allows for individual settings for each RTP session. Possibilities to specify different FEC protections for different receivers or geographical areas is also possible, as the solution supports multicast address based separation of the repair data from the original data.

8. It shall be possible for a terminal at any time to start decoding and rendering a media stream within a yet to be defined time limit in the order of a few seconds after the reception of the first media packets of the corresponding media stream.

Answer: The separation of the original data from the repair data allows decoding as soon as sufficient buffering time to receive the repair data has been given. The buffering time is only dependent on the FEC code and how the source blocks are constructed.

Variable length packets shall have an only limited impact onto the overall performance.

Answer: Any performance impact on the solution is dependent on the FEC code and how it builds up its source block when the source RTP packets are variable length.

7 References

[1]
RFC 3452

[2]
RFC 3550

[3]
RFC 3711

[4]
RFC 2793

[5]
RFC 3548

[6]
RFC 3388

[7]
draft-ietf-avt-ulp-10.txt

[8]
S4-040549

[9]
S4-040526
_1157444821.doc

RTP Header

RTP Payload

FEC Payload ID

FEC source data that is going to be protected

FEC Tag

Replaced PT (Payload type)

_1157452176.doc

Media

RTP packetization

RTP

Processing

UDP

MBMS transport

UDP

UDP

UDP

FEC De-tagging

RTP

Processing

FEC Encoding

& Packetization

RTP

Processing

RTP

Processing

RTP De-packetization

Media

SRTP

FEC

Decoding

FEC

Tagging

FEC De-tagging

FEC

Depacketization

Sender

Receiver

SRTP

SRTP

SRTP

_1157194065.doc

Source Block Number

Source Block Length

Encoding Symbol ID

_1156601386.doc

RTP Header

FEC encoding symbol

FEC Payload ID

Content and Size of FEC payload ID is dependent on FEC encoding and instance ID.

