3GPP SA4-PSM SWG#6
Tdoc S4-AHP142

October 11-13 2004, Newbury UK
Agenda Item: 4.4.1

Source:
Digital Fountain
Title:
Raptor MBMS file download specification
Document For:
Information and Decision

1. Introduction

The present contribution specifies how to use the Raptor code specified in [5], [6] and [7] for the MBMS file download service. The overall description of the Raptor code, the terminology, variable names, conventions and references of [5], [6] and [7] are assumed in this document. Only the additional elements needed to describe how Raptor applies to MBMS file download are included in this document.

The Raptor code properties meet all of the current and future requirements of an MBMS file download service. The basic properties of Raptor for file download are that, for any packet loss conditions, for download of files of any relevant size: (a) reception overhead of each individual UE is minimal; (b) the total transmission time and bandwidth needed to deliver files to any number of UEs is minimal.

The amount of working memory needed for decoding can easily fit into the MBMS requirements and still provide the above properties, and the amount of computation needed to encode and decode is minimal.

Raptor is a fountain code (as for example defined in [2]), i.e., as many encoding packets as needed can be generated on-the-fly, each containing unique encoding symbols that are equally useful for recovering a file. There are many advantages to using fountain codes versus other types of FEC codes, some of which are described in [2] and [3]. One advantage is that, regardless of packet loss conditions and UE availability, fountain codes minimize the number of encoding packets each UE needs to receive to reconstruct a file. This is true even under harsh packet loss conditions and when for example mobile UEs are only intermittently turned-on or available over a long file download session.

One advantage of the fountain property of Raptor is that it makes it possible to decide during the session how many encoding packets to generate and send. This can be useful if for example there is feedback from UEs indicating whether or not they received enough encoding packets to recover a file. When packet loss conditions are less severe than expected the transmission can be terminated early. When packet loss conditions are more severe than expected or UEs are unavailable more often than expected the transmission can be seamlessly extended.

Alternatively, if fixed duration MBMS sessions are used and after the conclusion of the initial session feedback is received which indicates that many UEs have not yet received enough packets to recover the file then it would be advantageous to schedule a repair MBMS session. For example, rather than extending the broadcast of small Reed-Solomon blocks to the length required for the worst loss conditions, service providers can schedule the duration for a shorter, more optimistic loss scenario and then dynamically extend the duration of the broadcast only if required using Raptor codes. This flexibility and ability to optimize transmission bandwidth usage is simply not possible with other FEC codes because they do not allow one to dynamically increase the number of encoding packets to be generated after encoding has started.

Another advantage of the fountain property of Raptor is that a P2P repair server can generate a single set of encoding packets and send as many as requested to each requesting UE, sending from the same set of encoding packets for all UEs independent of their individual packet loss patterns. This can substantially reduce the load on the P2P repair server compared to having to send specifically requested packets to each requesting UE. This property of Raptor is not offered by any other FEC code.

Since for the MBMS file download service the variety of future packet loss, UE availability and application conditions is hard to predict, it is important to choose an FEC solution that is as flexible as possible to work well under unpredictable conditions. Raptor codes provide maximum flexibility and efficiency and minimal complexity unmatched by any other FEC code.

2. Source blocks and sub-blocks

The maximum source block size B in bytes is recommended to be 4 MB in this document. Thus, files that are larger than B bytes in size are partitioned into more than one source block. Limiting the source block size to at most B bytes in size ensures that the encoding length of a source block can potentially be many times larger than the source block, and thus file download using this specification can handle very high packet loss conditions.

The maximum block size W in bytes that can be decoded in working memory is recommended to be 256 KB in this document. Thus, source blocks that are larger than W bytes in size are partitioned into N > 1 sub-blocks, and the Raptor decoder decodes one sub-block at a time. Each sub-block consists of the same number K of sub-symbols, where each sub-symbol is T bytes long. Then, each source symbol of the source block is T·N bytes long, and consists of the concatenation of exactly one sub-symbol from each of the N sub-blocks. Figure 1 shows a source block placed into a two dimensional array, where each entry is a T-byte sub-symbol, each row is a sub-block and each column is a source symbol. The number shown in each sub-symbol entry indicates their original order within the source block. For example, the sub-symbol numbered K contains bytes T·K through T·(K+1)-1 of the source block. Thus, the first K sub-symbols of the source block numbered 0 to K-1 form the first sub-block, the next K sub-symbols of the source block numbered K to 2·K-1 form the second sub-block, etc. Then, source symbol i is the concatenation of the ith sub-symbol from each of the sub-blocks, which corresponds to the sub-symbols of the source block numbered i, K+i, 2·K+i,…, (N-1)·K+i.

	0
	1
	2
	…
	…
	…
	…
	K-1

	K
	K+1
	K+2
	…
	…
	…
	…
	2·K-1

	2·K
	2·K+1
	2·K+2
	…
	…
	…
	…
	3·K-1

	…
	…
	…
	…
	…
	…
	…
	

	(N-1)·K
	…
	…
	…
	…
	…
	…
	N·K-1

Figure 1 – Source symbols from sub-symbols structure – the three highlighted columns show source symbols 0, 2 and K-1

Encoding symbols are generated from the source symbols composed of sub-symbols, and thus the size of an encoding symbol is T·N bytes consisting of N encoding sub-symbols each of size T bytes.

3. Session and packet information

The overall structure of the FEC Object Transmission Information and the FEC Payload ID are both defined in [8]. The UE needs to receive the specific FEC Object Transmission Information in a session description (carried in a FLUTE FDT) generally before starting to receive packets for a file to determine some of the critical parameters needed to decode the file. The FEC Payload ID is a header (that is part of the FLUTE header) that is carried in each packet to identify the encoding symbols carried in that packet.

3.1. FEC Object Transmission Information

Besides the FEC Encoding ID, the FEC Object Transmission Information includes:

· The file size F in bytes

· The payload size P of each packet in bytes

· The maximum source block size B in bytes

· The maximum working memory size W in bytes that indicates the largest sub-block that can be decoded in UE working memory.

A suggested value of P is 512 bytes for MBMS file download. This means that the total encoding packet length, which includes the IP, UDP and FLUTE headers totaling 44 bytes, is 556 bytes. In general P must be equal to G·N·T.

A suggested value of B is 4 MB for MBMS file download. This means that files that are at most 4 MB will consist of one source block, and that files larger than 4 MB will be partitioned into more than one source block. The method used to partition a file larger than 4 MB into source blocks is described in [4]. In general B must be at least W.

A suggested value of the maximum size W of a sub-block that can be decoded in working memory is 256 KB for MBMS file download. Other values of W could also be suitable, e.g. W = 512 KB or W = 128 KB. How a source block is partitioned into sub-blocks depends on whether the source block size is smaller or larger than working memory W, and is described below for the suggested values of B and W.

For the suggested values the algorithms described below compute for each source block:

· The number G of encoding symbols for the source block carried in each encoding packet

· The number K of source symbols in the source block

· The number N of sub-blocks into which the source block is partitioned

· The sub-symbol size T in bytes for the sub-blocks.

The symbol size is thus N·T bytes for the source block.
3.2. FEC Payload ID

The FEC Payload ID consists of a two-byte Source Block Number (SBN) and a two-byte Encoding Symbol ID (ESI), and thus the overall FEC Payload ID is 4 bytes long for the MBMS file download service. This allows sending of files of size up to P·232 bytes. As described in [4], the FEC Payload ID is included in each FLUTE header to identify the encoding symbols carried in the payload of the packet.

A longer FEC Payload ID could be used for other services. For example with an FEC Payload ID that consists of a four-byte SBN and a four-byte ESI, much larger source blocks can be used and much larger files can be sent. This would require some minor modifications to how the ESI is used to generate encoding symbols.

4. Encoding a file

All the examples in the subsequent subsections used the suggested parameter settings for the MBMS file download service, i.e. P = 512 bytes, W = 256 KB and B = 4 MB.

4.1. Smaller files

When the file size F ≤ W the file consists of a single source block that in turn consists of one sub-block, i.e., Z = N = 1. The number K of source symbols in the file is computed as ceil(F/T). For P = 512 bytes and W = 256 KB, the number G of encoding symbols placed into each encoding packet and the symbol size T is determined by Table 2 based on the file size F. In general, for other values of P and W, it is recommended that G and T are set in such a way such that K is at least 1,000 and T is as large as possible.

The SBN is set to 0 in the FEC Payload ID of each packet and the ESI is set to a two-byte value X, where the value of X should be different in each encoding packet. The ESI is used to uniquely identify the encoding symbols generated from the L pre-coding symbols of a source block that are placed into a single packet, where the value of L and the pre-coding symbols are generated as described in [7]. The sequence of ESI values for the packets sent in the MBMS session is generated as follows.

Generating ESI values

· Let Q be the largest prime integer such that Q ≤ floor(216/G)
· Let A be an integer between 1 and Q-1
· Let B be an integer between 0 and Q-1
· Let N be the number of packets to be sent in the session
· X = B
· For i = 0,…,N-1 do
· Use X as the ESI for the next packet
· X = (X + A) % Q
If another MBMS repair session is scheduled, then the ESI’s for the packets sent in that session can be generated using the above algorithm using the same value for A and using the value of X at the end of the MBMS session for the value of B. For example, suppose G = 16 (and thus Q = 4,093), A = 1 and B = 0. If 150 packets are sent in the MBMS session then their ESI values are 0, 1, …, 149, and at the end X = 150. Suppose 50 additional packets are to be sent in the MBMS repair session. Then A = 1 and B = 150, and the ESI values are 150, 151, …, 199 and at the end X = 200.

If a P2P repair server is to be used to send repair packets to any remaining UEs that still are able to recover the file, then the P2P repair server can analogously generate ESI’s for these packets using the above algorithm using the same value for A and using the last value of X at the end of the repair MBMS session for the value of B.

The values of the encoding symbols placed into the packet with ESI X are computed as follows:

Generating encoding symbols E0 [X],…, EG-1[X]

· v = Rand[X, 0, 220]

· Y = (X·G) % 216
· Repeat the following for i = 0,…,G-1

· d = Deg[v]

· a = 1 + Rand[Y, 1, L’-1]

· b = Rand[Y, 2, L’]

· Ei [X] = Enc[d, a, b]
· v = (v + 220/G) % 220
· Y = (Y + 1) % 216
Because of the way ESIs are generated for packets in different sessions, it is easy to see that all of the ESIs in the different sessions are all distinct and all the Y values used to generate the (d, a, b)-triple for each encoding symbol are all distinct as long as the total number of packets generated is at most Q.

	F range
	N
	G
	T
	K range

	512 B < F ≤ 64 KB
	1
	16
	32 bytes
	16 ≤ K ≤ 2 K

	64 KB < F ≤ 128 KB
	1
	8
	64 bytes
	1 K < K ≤ 2 K

	128 KB < F ≤ 256 KB
	1
	4
	128 bytes
	1 K < K ≤ 2 K

Table 2 – Source block parameters for small files when P = 512 bytes and W = 256 KB
EXAMPLE 1

File size F = 50 KB

Number of file packets = 100

Number of source blocks Z = 1

Number of sub-blocks N = 1

Number of encoding symbols per encoding packet G = 16

Symbol size T = 32 bytes

Number of source symbols K = 1,600

EXAMPLE 2

File size F = 100 KB bytes

Number of file packets = 200

Number of source blocks Z = 1

Number of sub-blocks N = 1

Number of encoding symbols per encoding packet G = 8

Symbol size T = 64 bytes

Number of source symbols K = 1,600

EXAMPLE 3

File size F = 200 KB bytes

Number of file packets = 400

Number of source blocks Z = 1

Number of sub-blocks N = 1

Number of encoding symbols per encoding packet G = 4

Symbol size T = 128 bytes

Number of source symbols K = 1,600

4.2. Larger files

When the file size F is more than W but at most B then the file consists of a single source block that is partitioned into N sub-blocks, where the length of each sub-block is greater than W/2 but at most W. The value of N is the smallest power of two such that N·W ≥ F. The size I of each sub-block is computed as ceil(F/N), and the number K of sub-symbols per sub-block is computed as ceil(I/T). Table 3 is used to determine the sub-block parameters based on the file size F when P = 512 bytes, W = 256 KB and B = 4 MB. In general, for other values of W and B, it is recommended that G and T are powers of two and set in such a way such that K is at least 2,000 and T is as large as possible.

The SBN is set to 0 in the FEC Payload ID of each packet and the ESI is set to a two-byte value X, where the value of X should be different in each encoding packet. The source block is partitioned into N sub-blocks, and each encoding packet contains G encoding symbols generated from the source block consisting of the N sub-blocks, where the values of N and G are obtained from Table 3. The ESI values for the packets and the values of the G encoding symbols E0 [X],…, EG-1[X] placed into the packet with ESI X are computed as described in Section 3.1.

	F range
	N
	G
	T
	K range

	256 KB < F ≤ 512 KB
	2
	4
	64 bytes
	2 K < K ≤ 4 K

	512 KB < F ≤ 1 MB
	4
	2
	64 bytes
	2 K < K ≤ 4 K

	1 MB < F ≤ 2 MB
	8
	1
	64 bytes
	2 K < K ≤ 4 K

	2 MB < F ≤ 4 MB
	16
	1
	32 bytes
	4 K < K ≤ 8 K

Table 3 – Source block parameters for large files when P = 512 bytes, W = 256 KB and B = 4 MB
EXAMPLE 4

File size F = 400 KB

Number of file packets = 800

Number of source blocks Z = 1

Number of sub-blocks N = 2

Size of a sub-block in bytes I = 200 KB

Number of encoding symbols per encoding packet G = 4

Sub-symbol size T = 64 bytes

Symbol size N·T = 128 bytes

Number of source symbols per source block K = 3,200

EXAMPLE 5

File size F = 800 KB

Number of file packets = 1,600

Number of source blocks Z = 1

Number of sub-blocks N = 4

Size of a sub-block in bytes I = 200 KB

Number of encoding symbols per encoding packet G = 2

Sub-symbol size T = 64 bytes

Symbol size N·T = 256 bytes

Number of source symbols per source block K = 3,200

EXAMPLE 6

File size F = 1.6 MB

Number of file packets = 3,200

Number of source blocks Z = 1

Number of sub-blocks N = 8

Size of a sub-block in bytes I = 200 KB

Number of encoding symbols per encoding packet G = 1

Sub-symbol size T = 64 bytes

Symbol size N·T = 512 bytes

Number of source symbols per source block K = 3,200

EXAMPLE 7

File size F = 3 MB

Number of file packets = 6,144

Number of source blocks Z = 1

Number of sub-blocks N = 16

Size of a sub-block in bytes I = 192 KB

Number of encoding symbols per encoding packet G = 1

Sub-symbol size T = 32 bytes

Symbol size N·T = 512 bytes

Number of source symbols per source block K = 6,144

4.3. Large files

When the file size F is more than B then the file is partitioned into more than one source block using the Algorithm for Computing Source Block Structure described in Section 5.1.2.3 of FLUTE [4]. The inputs to that algorithm are:

· The maximum number of source symbols per source block. This is set to the ratio of B/P, since there is one symbol per packet. If B = 4 MB and P = 512 bytes, the maximum number of source symbols per source block is 8 K.

· The transfer length in bytes. This is set to the file size F.

· The symbol length in bytes. This is set to P since there is one symbol per packet.

The output of the algorithm is the number Z of source blocks, and the number and lengths of source symbols in each of the Z source blocks (with possibly the last symbol of the last source block logically filled out with zeroes to a full length symbol).

Each encoding packet contains one encoding symbol generated from one of the Z source blocks. The SBN of each packet is set to the number of the source block from which the encoding symbol carried in the payload of the packet is generated, and thus the SBN is between 0 and Z-1. The ESI values for each source block are generated using the algorithm described in Section 3.1 independently for each source block, and thus the same ESI values are used for different source blocks of the same file. The method for generating an encoding symbol from a source block is as described in Section 3.2, where the source block is substituted for the file in that description.

EXAMPLE 8

File size F = 9 MB

Number of file packets = 18,432

Number of source blocks Z = 3

Size of source blocks = 3 MB (all equal size in this example)

For each of the 3 source blocks, the rest of the construction is the same as for Example 6 where the source block is substituted for the file in that description.

4.4. Encoding work per file

The encoding work per file can be derived from Section 6 of [7], i.e., the work to generate the pre-coding for a file is 6·F and the work on average to generate packet payloads containing encoding symbols for a file is 4.63 times the total length in bytes of the generated packet payloads.

5. Decoding a file

Just like for encoding, there are three cases of how to decide how to recover the file, depending on the file size F. When F ≤ W then the file is decoded as a single source block. Each received encoding packet contains an ESI and one or more encoding symbols. The ESI is used to reconstruct how each encoding symbol contained in the encoding packet was generated, and then when enough encoding packets have arrived the file is decoded.

Decoding is performed on a sub-block by sub-block basis. A decoding schedule is created based on received ESIs for a source block, and then that same decoding schedule can be used to decode all sub-blocks of the source block. Each sub-block is decoded using the algorithms described in [5], where the sub-block is substituted for the source block and the encoding sub-symbols are substituted for the encoding symbols in that description.

When B ≥ F > W then the file consists of a single source block that is partitioned into multiple sub-blocks that are decoded in a coordinated way. As each encoding packet arrives, the ESI is saved, and each encoding sub-symbol corresponding to a sub-block is saved in a temporary file dedicated to that sub-block. Then, based on the received ESIs the decoding schedule can be formed, and then that decoding schedule is applied to the encoding sub-symbols for each sub-block in sequence, decoding each sub-block within the limits of the working memory resources.

When F ≥ B then the file consists of multiple source blocks that are in turn partitioned into multiple sub-blocks. Each source block is handled independently of the other source blocks, i.e., all the ESIs for a source block are saved in a temporary file dedicated to that source block, and each encoding sub-symbol corresponding to a sub-block within the source block are saved in a temporary file dedicated to that sub-block within the source block. Then, for each source block in turn, based on the received ESIs for that source block the decoding schedule can be formed, and then that decoding schedule is applied to the encoding sub-symbols for each sub-block in sequence, decoding each sub-block within the limits of the working memory resources.

The decoding memory requirements for Raptor are slightly more than the sub-block length. For example, a 100 KB file that is encoded and decoded as a single source block takes slightly more than 100 KB of working memory for the decoding, whereas a 3 MB file is partitioned into 16 sub-blocks of 192 KB each, and thus the working memory needed to decode is slightly more than 192 KB. Decoding can be performed in place, i.e., a sub-block can be recovered in place using the same working memory that contains the encoding sub-symbols for the sub-block just before it is decoded.

5.1. Decoding work per file

The decoding work per file depends slightly on the reception overhead, i.e., the more packets received for a file the less the total work it takes to decode the file. For all file sizes the average decoding workload per file is around 10 when the reception overhead is 0.02, and drops to around 8 when the reception overhead is 0.04, where the decoding workload is the decoding work divided by the number of bytes in the file, and thus the decoding workload is the number of bytes that are exclusive-ored on average to decode each byte of the file. The decoding work per file is independent of the amount of packet loss and packet loss patterns.

Since the sub-symbols that are exclusive-ored in the decoding generally are many bytes long (sizes ranging from 32 bytes to 128 bytes depending on the file size), and since a CPU can generally exclusive-or together several bytes in a single operation, the exclusive-oring can be pipelined in such a way that decoding is very efficient.

5.2. Decoding failure probability

The decoding failure probability δ for a given reception overhead ε is the probability the decoding process fails to recover the source block when the number of received encoding symbols is (1+ ε) ·K, where K is the number of source symbols in the source block. For all relevant values of K the decoding failure probability is at most around δ = 10-3 when the reception overhead is ε = 0.01 and the decoding failure probability is at most around δ = 10-6 when the reception overhead is ε = 0.02. The decoding failure probability continues to drop off as the reception overhead increases, but at a much slower rate.

These results were obtained by running the decoder many times on different packet sequences until several decoding failures were observed and then reporting the average number of times decoding failed. In some cases this required running the decoder tens of millions of times. Because each encoding packet is generated at random independently of all other encoding packets, the received encoding packets are random for any loss pattern of encoding packets that does not depend on their values. Since packet loss is independent of packet content, the value of δ is independent of packet loss patterns.

6. Receiving encoding packets from different senders

One reason why it is easy to architect a variety of supplemental services using Raptor codes is that a UE can combine received encoding symbols from multiple senders to reconstruct a file without coordination among the senders. The only requirement is that the senders use different ESIs to generate the encoding symbols that they send in encoding packets to the UE. A recommended way to achieve this is to designate different ranges of the ESI space to be used by each such sender. Since the number of possible ESI values is so much larger than the number of ESIs typically used in any session, this is easy to achieve.

As an example of the use of this property, consider providing a supplemental service to the MBMS file download service that allows UEs that did not receive enough encoding packets to reconstruct a file from the MBMS file download session to request additional encoding packets to be sent from a point-to-point repair server via an HTTP session. The repair server generates encoding symbols from the file and sends them using HTTP, and all these encoding symbols can be combined with those received from the MBMS file download session by the UE to recover the file. Using this approach allows different servers to provide incremental file download services without coordination between the servers, and ensuring that each individual UE need receive only the minimal number of encoding packets to recover each file.

7. Other considerations

The Raptor code as described in this document is not a systematic code, i.e., all of the original source symbols of a source block are not necessarily among the encoding symbols that are sent. However, the companion document [6] describes how to modify the Raptor code described in this document to design a systematic Raptor code, albeit at the cost of slightly more complex encoding and decoding and slightly higher encoding and decoding workloads.
8. Conclusions

A description of the Raptor encoder has been provided that minimizes, under all packet loss and UE availability conditions, the transmission time needed to reliably deliver files to UEs. Furthermore, under all packet loss and UE availability conditions, the number of SDUs that each individual UE needs to receive to fully recover files is minimal. Because Raptor codes are fountain codes that are designed to work well in all conditions and provide unprecedented flexibility, testing the properties of Raptor codes under a wide variety of simulation conditions will only prove the superior performance of Raptor codes versus any other type of reliable file download mechanism.

9. References

[1] M. Luby. “LT Codes”, Proceedings of The 43rd Annual IEEE Symposium on Foundations of Computer Science, November 16-19 2002, pp. 271-282.
[2] A. Shokrollahi, “Raptor Codes”, Digital Fountain Technical Report, DF2003-06-001

[3] J. Byers, M. Luby, M. Mitzenmacher, “A Digital Fountain Approach to Asynchronous Reliable Multicast”, IEEE J. on Selected Areas in Communications, Special Issue on Network Support for Multicast Communication, Vol. 20, No. 8, October 2002, pp. 1528 – 1540

[4] T. Paila, M. Luby, R. Lehtonen, V. Roca, R. Walsh, “FLUTE - File Delivery over Unidirectional Transport”, IETF RMT working group, RFC 3926, October 2004

[5] “Raptor decoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP140, October 11-13 2004

[6] “Raptor systematic specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP141, October 11-13 2004

[7] “Raptor encoder specification”, Digital Fountain, 3GPP SA4-PSM SWG#6, Newbury UK, Agenda item 4.4.1,Tdoc S4-AHP139, October 11-13 2004

[8] M. Luby, L. Vicisano, J. Gemmell, L. Rizzo, M. Handley, J. Crowcroft, “Forward Error Correction (FEC) Building Block”, RFC 3452, December 2002

