3GPP TSG-SA Codec Working Group
Tdoc S4(01)0XXX

TSG-S4#18: September 3 – 7, 2001, Erlangen, Germany

3GPP TSG-SA Codec Working Group
Tdoc S4-AHP091

Source:
NTT DoCoMo, Inc.
 and Apple Computer Inc.

Title:
Proposed Simple Text Stream Format

Document for:
Discussion

Agenda Item:
Packet Switched Multimedia (PSM)
1. 3GPP Specific Format

1.1. Formatted Text

1.1.1. General
This section describes a proposal on text tracks to be used in the 3GPP file format. This format is based on contribution 496, which in turn was based on the QuickTime text format. However, it has diverged from that, in order to meet 3GPP needs.

This format is intended as a short-term solution to immediate pressing problems. In the long term we expect to build a format which is richer, and closely aligned to the solution for vector graphics. In addition, both ISO (MPEG) and the W3C are thinking of starting initiatives in this area, and collaboration may well be fruitful.

1.1.2. Bytes, Characters, and Glyphs

This document uses these terms carefully. Since multi-byte characters are permitted (i.e. 16-bit Unicode characters), the number of characters in a string may not be the number of bytes. Also, a byte-order-mark is not a character at all, though it occupies two bytes. So, for example, storage lengths are specified as byte-counts, whereas highlighting is specified using character offsets.

It should also be noted that in some writing systems the number of glyphs rendered may be different again. For example, in English, the characters ‘fi’ are sometimes rendered as a single ligature glyph.

1.1.3. Media Handler

A text stream is its own unique stream type. For the 3GPP file format, the handler-type within the ‘hdlr’ atom shall be ‘text’.
1.1.4. Media Handler Header

The 3G text track uses an empty null media header (‘nmhd’), called Mpeg4MediaHeaderAtom in the MP4 specification, in common with other MPEG streams.

aligned(8) class Mpeg4MediaHeaderAtom

extends FullAtom(’nmhd’, version = 0, flags) {
 }

1.1.5. Text rendering position and composition

Text is rendered within a bounding box, or region (a concept derived from SMIL). This permits the terminal to position the text within the overall presentation, and also to render the text appropriately given the writing direction. For text written left to right, for example, the first character would be rendered at, or near, the left edge of the box, and with its baseline down from the top of the box by one baseline height (a value derived from the font and font size chosen). Similar considerations apply to the other writing directions.

The defined text box is filled with the background color, unless the keyed-text flag is set; after that the text is painted in the text color, or in the chosen highlight style if highlighting or Karaoke is requested. ‘Keying’ text over video or pictures can be complex and may require double-buffering, and its support is optional in the terminal. Content authors should beware that if they specify keyed-text, and the content is played on a terminal not supporting it, the entire text box will obscure visual material behind it. If text is keyed, then it is rendered over the track(s) behind with no background fill color. A keyed-text track therefore is layered closer to the viewer than the video over which it is keyed.

Terminals may choose to anti-alias their text, or not.

The text box size and position and layering are defined using structures from the ISO base media file format. This track header box is used:

aligned(8) class TrackHeaderBox

extends FullBox(‘tkhd’, version, flags){

if (version==1) {

unsigned int(64)
creation_time;

unsigned int(64)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(64)
duration;

} else { // version==0

unsigned int(32)
creation_time;

unsigned int(32)
modification_time;

unsigned int(32)
track_ID;

const unsigned int(32)
reserved = 0;

unsigned int(32)
duration;

}

const unsigned int(32)[2]
reserved = 0;

template int(16) layer = 0;

template int(16) alternate_group = 0;

template int(16)
volume = {if track_is_audio 0x0100 else 0};

const unsigned int(16)
reserved = 0;

template int(32)[9]
matrix=

{ 0x00010000,0,0,0,0x00010000,0,0,0,0x40000000 };

// unity matrix

template unsigned int(32) width =

{if track_is_visual 0x01400000 else 0};

template unsigned int(32) height =

{if track_is_visual 0x00F00000 else 0};
}

Visually composed tracks including video and text are layered using the ‘layer’ value. This compares, for example, to z-index in SMIL. More negative layer values are towards the viewer. (This definition is compatible with that in ISO/MJ2).

The text box is defined by the track width and height, and translation offset. This corresponds to the SMIL region. The width and height are stored in the track header fields above.

The translation values are stored in the track header matrix in the following positions:

{ 0x00010000,0,0, 0,0x00010000,0, tx, ty, 0x40000000 }

These values are fixed-point 16.16 values, here restricted to be integers (the lower 16 bits of each value must be zero). The X axis increases from left to right; the Y axis from top to bottom. (This use of the matrix is conformant with ISO/MJ2.)

So, for example, a centered text box of size 200x20, positioned below a video of size 320x240, would have track_width set to 2000, track_height set to 20, and tx = (320-200)/2 = 60, and ty=240.

1.1.6. Marquee Scrolling

Text can be ‘marquee’ scrolled in this specification (compare this to Internet Explorer’s marquee construction). When scrolling is performed, the terminal first calculates the position in which the text would be displayed with no scrolling requested. Then:

a) If scroll-in is requested, the text is initially invisible, just outside the text box, and enters the box in the indicated direction, scrolling until it is in the normal position;

b) If scroll-out is requested, the text scrolls from the normal position, in the indicated direction, until it is completely outside the text box.

The rendered text is clipped to the text box, as always. Note that both scroll in and scroll out may be specified; the text scrolls continuously from its invisible initial position, through the normal position, and out to its final position.

If a scroll-delay is specified, the text stays steady in its normal position (not initial position) for the duration of the delay; so the delay is after a scroll-in but before a scroll-out. This means that the scrolling is not continuous if both are specified. So without a delay, the text is in motion for the duration of the sample. For a scroll in, it reaches its normal position at the end of the sample duration; with a delay, it reaches its normal position before the end of the sample duration, and remains in its normal position for the delay duration, which ends at the end of the sample duration. Similarly for a scroll out, the delay happens in its normal position before scrolling starts. If both scroll in, and scroll out are specified, with a delay, the text scrolls in, stays stationary at the normal position for the delay period, and then scrolls out – all within the sample duration.

The speed of scrolling is calculated so that the complete operation takes place within the duration of the sample. Therefore the scrolling has to occur within the time left after scroll-delay has been subtracted from the sample duration. Note that the time it takes to scroll a string depends on the rendered length of the actual text string.

The scrolling direction is set by a two-bit field, with the following possible values:

0x00 – text is vertically scrolled up (‘credits style’), entering from the bottom of the bottom and leaving towards the top.

0x01 – text is horizontally scrolled (‘marquee style’), entering from the right and leaving towards the left.

0x10 – text is vertically scrolled down, entering from the top and leaving towards the bottom.

0x11 – text is horizontally scrolled, entering from the left and leaving towards the right.

1.1.7. Language

The human language used in this stream is declared by the language field of the media-header atom in this track. It is an ISO 639/T 3-letter code. The knowledge of the language used might assist searching, or speaking the text. Rendering is usually language neutral, though in rare cases a Unicode glyph’s writing direction may be language dependant. Note that the values ‘und’ (undetermined) might occur. The value ‘mul’ (multiple languages) is not permitted, as there is no way to tag individual samples or strings with a language in this simple specification.

1.1.8. Fonts and Metrics

Within the sample description, a complete list of the fonts used in the samples is found. This enables the terminal to pre-load them, or to decide on font substitution.

There is an issue if different terminals use different versions of the same font. For example, here is the same text rendered on two systems; it was authored on the first, where it just fitted into the text box.

[image: image1.png]This is a string which is rendered (o the terminal

This s

String which is rendered o the termil

On the second, slightly looser spacing means that it doesn’t fit. We either need to decide on the fonts and their metrics, or specify a technique such as textlength from SVG, to help ameliorate this.

1.1.9. Writing direction and text wrap

Writing direction specifies the way in which the character position changes after each character is rendered. It also will imply a start-point for the rendering within the box. In this specification the writing direction is determined from the Unicode glyphs used, and possibly the language setting.

Wrapping of text from line to line is complex, and can require hyphenation rules and other complex language-specific criteria. For these reasons, text is not wrapped in this specification. If a string is too long to be drawn within the box, it is clipped. The terminal may choose whether to clip at the pixel boundary, or to render only whole glyphs.

1.1.10. Highlighting and Karaoke

Text may be highlighted for emphasis. Since this is a non-interactive system, solely for text display, the utility of this function may be limited. The terminal may choose the method used to accomplish highlighting: for example, the color of the text may be changed, or the background color may be changed as well. ‘Inverse color’ highlighting is common and acceptable.

Karaoke highlighting is an extension of highlighting. In a Karaoke highlight, successive contiguous sub-strings of the text sample are highlighted at the specified times. The terminal may choose whether to highlight only those characters, or the entire string from the beginning up to the characters highlighted at any given time.

1.1.11. Style record

Both the sample format and the sample description contain style records, and so it is defined once here for compactness.

aligned(8) class StyleRecord {

unsigned int(16)
startChar;

unsigned int(16)
endChar;

unsigned int(16)
font-ID;

unsigned int(8)
face-style-flags;

unsigned int(8)
font-size;

unsigned int(8)
text-color-rgb[3];

unsigned int(8)
reserved;
// for alignment
}

startChar:

character offset of the beginning of this style run (always 0 in a sample description)

endChar:

first character offset to which this style does not apply (always 0 in a sample description)
font-ID:

font identifier from the font table; in a sample description, this is the default font
face style flags: in the absence of any bits set, the text is plain

1
bold

2 italic

4 underline

font-size:

font size (nominal point size, in essentially the same units as the width and height)
text-color-rgb:

rgb color, 8 bits each of red, green, blue

Terminals must support plain and underlined text, and may support bold, italic and bold-italic depending on their capabilities and the font selected. If a style is not supported, the text must still be rendered in the closest style available.
1.1.12. Sample Description Format

The sample table box ('stbl') contains sample descriptions for the text track. Each entry is a sample entry box of type ‘tx3g’. It starts with the standard fields (the reserved bytes and the data reference index). Some fields can be overridden or supplemented by additional boxes within the text sample itself. These are discussed below.

There can be multiple text sample descriptions in the sample table. If the overall text characteristics do not change from one sample to the next, the same sample description is used. Otherwise, a new sample description is added to the table. Not all changes to text characteristics require a new sample description, however. Some characteristics, such as font size, can be overridden on a character-by-character basis. Some, such as karaoke highlighting, are not part of the text sample description and can be changed dynamically.

The TextDescription extends the regular sample entry with the following fields.

class FontRecord {

unsigned int(16)
font-ID;

unsigned int(8)
font-name-length;

unsigned int(8)
font[font-name-length];
}

class FontTableBox() extends Box(‘ftab’) {

FontRecord
font-entry[];
// the records fill the box
}

class TextSampleEntry() extends SampleEntry (‘tx3g’) {

unsigned int(32)
displayFlags;

signed int(8)

justification;

unsigned int(8)
background-color-rgb[3];

StyleRecord

default-style;

FontTableBox

font-table;
}

displayFlags:

scroll In

0x0020

scroll Out

0x0040

scroll direction

0x01800

/ see above for values

key text

0x4000

/ note that support is optional
justification:

left
0

center
1

right
-1
background-color-rgb:

rgb color, 8 bits each of red, green, blue
style record of default style: startChar and endChar must be zero in a sample description

A font table must follow these fields, to define the complete set of fonts used. The font table is an atom of type ‘ftab’. Every font used in the samples is defined here by name. Each entry consists of a 16-bit local font identifier, and a font name, expressed as a string, preceded by an 8-bit field giving the length of the string in bytes. The name is expressed in UTF-8 characters, unless preceded by a byte-order-mark, whereupon the rest of the string is in 16-bit Unicode characters.
1.1.13. Sample Format

Each sample in the media data consists of a string of text, optionally followed by sample modifier boxes.
For example, if one word in the sample has a different size than the others, a 'styl' box is appended to that sample, specifying a new text style for those characters, and for the remaining characters in the sample. This overrides the style in the sample description. These boxes are present only if they are needed. If all text conforms to the sample description, and no characteristics are applied that the sample description does not cover, no boxes are inserted into the sample data.

class TextSampleModifierBox(type) extends Box(type) {
}

class TextSample {

unsigned int(16)

text-length;

unsigned int(8)

text[text-length];

TextSampleModifierBox
text-modifier[];
// to end of the sample
}

The initial string is preceded by a 16-bit count of the number of bytes in the string. The sample size table provides the complete byte-count of each sample, including the trailing modifier boxes; by comparing the string length and the sample size, you can determine how much space, if any, is left for modifier boxes.
The text samples shall be uniformly coded in UTF-8, or start with a BYTE ORDER MARK (0xFEFF) and by that indicate full Unicode.
Any unrecognised boxes found in the text sample should be skipped and ignored, and processing continue as if it were not there.

1.1.13.1. Sample Modifier Boxes
1.1.13.1.1. Text Style

'styl'

This specifies the style of the text. It consists of a series of style records as defined above, preceded by a 16-bit count of the number of style records. Each record specifies the starting character position of the text to which it applies. The style persists until the next startChar, or the end of the text.

class TextStyleBox() extends TextSampleModifierBox (‘styl’) {

unsigned int(16)
entry-count;

StyleRecord

text-styles[entry-count];
}

1.1.13.1.2. Highlight

'hlit' - Specifies highlighted text: the atom contains two 16-bit integers, the starting character to highlight, and the first character with no highlighting (e.g. values 4, 6 would highlight the two characters 4 and 5). The second value may be the number of characters in the text plus one, to indicate that the last character is highlighted.

The precise way in which highlighting is achieved is terminal-dependent.

class TextHighlightBox() extends TextSampleModifierBox (‘hlit’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;
}

1.1.13.1.3. Scroll Delay

'dlay' - Specifies a delay after a Scroll In and/or before Scroll Out. A 32-bit integer specifying the delay before the text sample starts scrolling, in the units of the timescale of the track. The default delay, in the absence of this box, is 0.

class TextScrollDelayBox() extends TextSampleModifierBox (‘dlay’) {

unsigned int(32)
scroll-delay;
}

1.1.13.1.4. Karaoke

'krok' - Karaoke. The number of highlight events are specified, and each event is specified by a starting and ending character offset and an end time for the event. The start time is either the sample start time or the end time of the previous event. The specified characters are highlighted from the previous end-time (initially the beginning of this sample’s time), to the end time.

The atom starts with a 16-bit count of the event count, and then that number of 8-byte records. Each record contains the time as a 32-bit number, and the text start and end values, each as a 16-bit number. These values are specified as in the highlight record – the first character to highlight, and the first character not highlighted. The time in each record is the end time of this highlight event; the first highlight event starts at the start time of the sample. It is in the units expressed by the timescale of the track.
The precise way in which the highlighting is achieved is terminal dependent, as is the choice of whether at any instant the character range specified is highlighted, or all characters up to that point.

class TextKaraokeBox() extends TextSampleModifierBox (‘krok’) {

unsigned int(16)
entry-count;

for (i=1; i<=entry-count; i++) {

unsigned int(32)
highlight-end-time;

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;
}

1.1.13.1.5. HyperText

'href' – HyperText link. The existence of the hypertext link is visually indicated in a suitable style (e.g. underlined blue text).

This box contains these values:

startCharOffset: – the start offset of the text to be linked

endCharOffset: – the end offset of the text (start offset + number of characters)

URLLength:– the number of bytes in the following URL

URL: UTF8 characters – the linked-to URL

The URL should be an absolute URL, as the context for a relative URL may not always be clear.
class TextHyperTextBox() extends TextSampleModifierBox (‘href’) {

unsigned int(16)
startcharoffset;

unsigned int(16)
endcharoffset;

unsigned int(8)
URLLength;

unsigned int(8)
URL[URLLength];
}

� Tomoyuki Ohya (� HYPERLINK "mailto:ohya@spg.yrp.nttdocomo.co.jp" ��ohya@spg.yrp.nttdocomo.co.jp�)		Multimedia Labs., NTT DoCoMo Inc.

� David W Singer (� HYPERLINK "mailto:singer@apple.com" ��singer@apple.com�)			Quick Time, Apple Computer Inc.

1/7
7/7

