3GPP TSG-SA PSM AdHoc Meeting
Tdoc S4-AHP056_A

October 30-31, 2001, Helsinki, Finland

Source:
Nokia, ZOOMON, Ericsson, Siemens.

Title:
Compact Vector Graphics – Technical annex to contribution AHP056

Document for:
Discussion

Agenda Item:
5.3

TECHNICAL ANNEX A

41
CVG Specification

41.1
Introduction

41.2
Structure

41.3
Main Header

41.3.1
Configuration

51.4
Sub Header

51.4.1
File Size

51.4.2
Global Attributes

51.4.3
Definitions

71.5
Body

71.5.1
Element Definition

81.5.2
Attribute Definition

101.5.3
Structural Elements

121.5.4
Conditional processing and representation of the 'TEST' attribute

131.5.5
Style

151.5.6
Transformations and Units

171.5.7
Path Element

211.5.8
Basic Shapes

231.5.9
Text

241.5.10
Color

251.5.11
Linking

261.5.12
Animation

301.5.13
Fonts

311.5.14
Metadata

322
Representation of Basic Data Types

322.1
Representation of Integer

322.1.1
Representing a Nonnegative Integer val via Codebook-cl

322.1.2
Representation of cl, and Modes of Representation

322.1.3
Representing a Nonnegative Integer of Unknown Upper Bound

332.1.4
Representing an Integer val via Codebook-cl

332.1.5
Representing an Integer of Unknown Dynamic Range

332.2
Representation of Real Number Values

342.3
Length

342.4
Coordinate

TAble of Figures

4Figure 8: Layout of coded representation

4Figure 9: Layout of Main Header representation

5Figure 10: Layout of Sub Header representation

7Figure 11: CVG Body Structure

7Figure 12: Element Structure

24Figure 13: Color Representation

34Figure 14: Length Representation

1 CVG Specification

1.1 Introduction

The purpose of the CVG Core Module is to preserve the structure and information content of an SVG representation, while being efficient in terms of the number of bits used. The syntax is divided into two parts: an initialisation part, mainly consisting of configuration and definitions, followed by the animated vector graphics body.

1.2 Structure

The layout of the coded representation of a basic SVG representation is depicted in
Figure 1
.

Figure 1: Layout of coded representation
1.3 Main Header

Figure 2: Layout of Main Header representation
13-bit wide "Type ID", is an identifier which indicates that the file is in Wireless Scaleable Vector Graphics (CVG) format. This field is identical for all of the representations in this format. The identifier has the following binary value: 1011011101111.

5-bit wide "Vers. #", indicates the version number. For the initial implementation, this value is 0.

28-bit wide configuration field will be described in the next section.
1.3.1 Configuration

This 28-bit data declares the configuration of the representation to follow. It consists of the following fields:

4-bit "Spatial Resolution" field, which denotes the fixed-point sub-integer resolution used in the representation of coordinates, sizes, etc.(see Section 2.2 for a detailed discussion on real number value representation)

7-bit "Time Resolution" field, which specifies the resolution used in time representations. The value of this field times 10 ms. gives the increments used in the time representations. For example, if this field is 5, the time representations are multiplied by 50 milliseconds to get the correct time.

3-bit "Color Resolution" field, which specifies log2 of the color depth for encoding. See Section 1.5.10 for color representation.

7-bit "Scale resolution" field. (As multiples of 0.01)

5-bit "Angle resolution" field. (In terms of degrees)

1.4 Sub Header

Figure 3: Layout of Sub Header representation

1.4.1 File Size

The byte size of the file is encoded as integer value. See Section 2.1.3 fore representation of nonnegative integers without upper bound.

1.4.2 Global Attributes

The ‘Global Attributes’ field corresponds to the attributes of the outmost svg element <svg>…</svg> field in the SVG syntax.

The Global attribute declarations part consists of a series of attribute declarations. Each attribute declaration has the following form:

4-bit attribute identifier. Four consecutive ones (1111) is reserved for the token which declares that attribute definitions are finished.
The Global attribute identifier allocation is as follows:

0000
viewBox
0001
width
0010
height
0011
x
0100
y
0101
style
0110
transform
0111
preserveAspectRatio

1000
zoomAndPan

1001-1110
reserved
1111
DONE with global attribute definitions

Those attributes, which can be represented as a style property (e.g., fill, stroke, etc.) should be converted into style properties before or during the conversion to binary format.
1.4.3 Definitions

This field corresponds to the <defs>…</defs> field of the SVG syntax. This field may be used for defining the styles, which will be used commonly in the animation. Although defining elements in the "Definitions" field will be supported, it is not recommended.

The items defined in the definitions field are automatically numbered for future referencing.

Each definition starts with a 6-bit "Def Type" token, which declares the type of definition. The value of the token which declares a style definition is 000000. A token value of 111111 states that the definitions section has ended. The other 62 values are reserved for now, to be defined in the future. The rest of the definition proceeds in a way specific to the type of definition. However, for each type, the representation must be designed in such a way that the decoder recognizes when the particular definition has ended.

When the Def Type is 000000 (i.e. style definition), a 4-bit "Property type" field follows. This field declares the type of the property being defined. Most frequently used 13 properties can be represented with this 4-bit property type field. In case a property which is not in this list is to be defined, a 4-bit EXT (extension) code is generated, which is followed by a 6-bit representation of the property. The three code words are reserved as follows:

1111 for DONE, which states the style definitions have ended.

1110 for MOVE TO NEXT, which states that the current style definition has ended, and another style definition will follow.

1101 for EXT (extension)

The most commonly used properties, fill and stroke, are assigned the codes 0000 and 0001, respectively.

Body

Figure 4: CVG Body Structure

This field corresponds to the main body of <svg>…</svg> field of the SVGT and SVGB syntax, excluding the definitions part. After the definitions are finished, the main body of the animated vector graphics representation starts. There is no 'BODY START CODE', because the decoder knows when the definitions part has finished, and it should start decoding the main body afterwards.

1.4.4 Element Definition

The body consists of a series of element declarations. A generic element declaration consists of the following parts:

SVGT , SVGB and SVG1.1 Element Definition, Figure 5:

[Element Identifier][Element Size][Element type] [Element Attributes]

Unknown Element Definition:

[Unknown Element Identifier][Element Size][Element type] [TEXT STRING]

The Unknown Element has a unique Element ID and the data inside this element is encoded as UTF-8 text string.

Figure 5: Element Structure

Segments:

[Element Identifier]:From 5 to 7 bit element identifier. This identifier states the element being declared. The element identifier allocation is as follows:

00000
path
00001
text
00010
rect
00011
circle
00100
ellipse
00101
symbol
00110
CData
00111
use
01000
g
01001
image
01010
animate
01011
set
01100
animateMotion
01101
animateTransform
01110

glyphs
01111

font

10000

a
10001

polygon
10010

polyline

10011

switch

10100

line

10101

font-face

10110

missing-glyph

10111

hkern

11000

vkern

11001

animateColor

11010

desc
11011

title
11100

svg
11101

defs
1111000
unknown element

1111001
metadata

1111010
Reserved
1111011
Reserved

1111111
Reserved
11111

Reserved

[Element Size] The size of the Element and it’s attributes but not children in bits. The number of bits is encoded as nonnegative integer of unknown upper bound (See Section 6.1.3.) with a default codebook 7.

[Has Children] The “Has Children”-flag is 1-bit indicating if the element has a child (1) or not (0). If the element does have children elements, the bit is followed by a “Number of children” field. The number of Children of an Element is encoded as integer of unknown upper bound in relative mode with a default codebook 4. If the Element does not contain child elements this size field is omitted.

Container Elements: An element which can have graphics elements and other container elements as child elements. Specifically: 'svg', 'g', 'defs' 'symbol', 'a' and 'switch'.

Graphics Elements: One of the element types that can cause graphics to be drawn onto the target canvas. Specifically: 'path', 'text', 'rect', 'circle', 'ellipse', 'line', 'polyline', 'polygon', 'image' and 'use'.

1.4.5 Attribute Definition

Any SVG element with attributes should be encoded in the following order:

[ElementIdentifier][ElementSize][HasChildren][RequiredSVGTAttr1][RequiredSVGTAttrN][SVGTOptionalAttribute1][SVGTOptionalAttributeN][SVGBOptionalAttribute1][SVGBOptionalAttributeN][SVGAttribute1][SVGAttributeN][UnknownAttribute]

The Encoder should put the attributes into order starting with the SVGT required attributes, SVGT optional attributes, SVGB optional attributes, SVG optional attributes and finally unknown attributes.

· Required attributes. For these attributes, configuration data is not needed, because the decoder knows that they are included.

· Optional attributes. Consist of a configuration field, which states which of the optional attributes will be included, followed by the attribute value(s).

Example:
<rect fill="#c488aa" xyz=”foo” stroke="none" x="0" y="0" onclick= “rect_click(evt)" width="160" height="160" onclick= “rect_click(evt)" />

[Element Identification] [Element Size] [Element Type] [width=”160”] [height=”160”] [x=”0”] [y=”0”] [stroke="none"] [fill="#c488aa"] [onclick= “rect_click(evt)"] [xyz=”foo”]

Element Identification: for <rect> it is 00010

Element Size: to be computed as represented as nonnegative integer. See Section 2.1.3
Has Children: for <rect> it is 0. (no children)

Optional SVGT attributes for <rect> : x, y, fill, stroke

Required <rect> attributes: width, height

Optional SVG attribute:: onclick

Unknown attribute: xyz

Structural Elements

1.4.5.1 Element Declaration for 'Svg' (<svg>) Element

· Element identifier: 11100

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS, viewbox, preserveaspectratio, width, height, version, zoomAndPan,

· Required attributes: None
1.4.5.1.1 Representation of COORDS
See Section 2.4
1.4.5.1.2 Representation of viewBox values

See Section 1.5.6.2

1.4.5.1.3 Representation of preserveAspectRatio values

See Section 1.5.6.3
1.4.5.1.4 Representation of width, height

Same as the representation of width and height of rectangles, as described in Section 1.5.8.1.2
1.4.5.1.5 Representation of version
Indicates the SVG language version to which this document fragment conforms as real number. See Section 2.2
1.4.5.1.6 Representation of zoomAndPan

The outermost 'svg' element in an SVG document fragment has attribute zoomAndPan, which takes the possible values of disable (1) and magnify (0), with the default being magnify.
1.4.5.2 Element Declaration for 'Defs' (<defs>) Element

· Element identifier: 11101

· Optional attributes: ID, STYLE, TRANSFORM, EXT , TEST
· Required attributes: None
1.4.5.3 Element Declaration for 'Desc' (<desc>) Element

· Element identifier: 11010

· Optional attributes: ID, STYLE, EXT

· Required attributes: None
1.4.5.4 Element Declaration for 'Title' (<title>) Element

· Element identifier: 11011

· Optional attributes: ID, STYLE, EXT

· Required attributes: None
1.4.5.5 Element Declaration for 'Group' (<g>) Element

· Element identifier: 01000

· Optional attributes: ID, STYLE, TRANSFORM, EXT , TEST
· Required attributes: None
1.4.5.6 Element Declaration for ‘Symbol’ (<symbol>) Element

· Element identifier: 00101

· Optional attributes: ID, STYLE, TRANSFORM, EXT, externalResourcesRequired, VIEWBOX, PRESERVEASPECTRATIO

· Required attributes: None

1.4.5.6.1 Representation of viewBox values

See Section 1.5.6.2

1.4.5.6.2 Representation of preserveAspectRatio values

See Section 1.5.6.3

1.4.5.6.3 Representation of externalResourcesRequired values

See Section 1.5.4.2.4
1.4.5.7 Element Declaration for ‘Use’ Element

· Element identifier: 00111

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS, width, height

· Required attributes: xlink:href

1.4.5.7.1 Representation of COORDS
See Section 2.4

1.4.5.7.2 Representation of width, height

Same as the representation of width and height of rectangles, as described in Section 1.5.8.1.2
1.4.5.7.3 Representation of xlink:href (#URI)

The string (#URI) is encoded as integer id, similar to ID
1.4.5.8 Element Declaration for 'Image' (<image>) Element

· Element identifier: 01001

· Optional attributes: ID, STYLE, TRANSFORM, EXT,TEST, COORDS, VIEWBOX, PRESERVEASPECTRATIO
· Required attributes: width, height, data
1.4.5.8.1 Representation of COORDS
See Section 2.4
1.4.5.8.2 Representation of width and height
Same as the representation of width and height of rectangles, as described in Section 1.5.8.1.2
1.4.5.8.3 Representation of viewBox values

See Section 1.5.6.2
1.4.5.8.4 Representation of preserveAspectRatio values

See Section 1.5.6.3
1.4.5.8.5 Representation of data
data field corresponds to 'xlink:href' field of the SVG <image> element. The image file is read from the specified link, and embedded into the bitstream after a header for the images

The 4 bit header is defined as follows:

1000 External Link

1001 WBMP

1010 PNG

1011 JPEG

1100 SVG

Conditional processing and representation of the 'TEST' attribute

SVG contains a 'switch' element along with attributes requiredFeatures, requiredExtensions and systemLanguage to provide an ability to specify alternate viewing depending on the capabilities of a given user agent or the user's language.

1.4.5.9 Element Declaration for 'Switch' (<switch>) Element

· Element identifier: 10011

· Optional attributes: ID, STYLE, TRANSFORM,TEST, EXT,
· Required attributes: none

The following feature set is used:

001 org.w3c.svg.1-1.svgt

010 org.w3c.svg.1-1.svgb

011-111 Reserved
Attributes requiredFeatures, requiredExtensions and systemLanguage act as tests and return either true or false results. The 'switch' renders the first of its children for which all of these attributes test true. If the given attribute is not specified, then a true value is assumed.

Attribute externalResourcesRequired is available on all container elements and to all elements which potentially can reference external resources. It specifies whether referenced resources that are not part of the current document are required for proper rendering of the given container element or graphics element.

1.4.5.10 Representation of the ‘TEST’ Attribute

‘TEST’ Attribute incorporates the following attributes: requiredFeatures, requiredExtensions, systemLanguage and externalResourcesRequired. The ‘TEST’ attribute is represented as a sequence of {Type, Value(s)} pairs. The Type is a token which identifies the type of ‘TEST’ which will be set, and Value(s) is the type-specific representation of the value.

Table 1: TEST Attributes

	00
	requiredFeatures

	01
	requiredExtensions

	10
	systemLanguage

	11
	externalResourcesRequired

1.4.5.10.1 Representation of ‘requiredFeatures’ values:
The value is a list of feature strings, with the individual values separated by white space. The feature strings are encoded as textual data. See1.5.9
1.4.5.10.2 Representation of ‘requiredExtensions’ values:
The requiredExtensions attribute defines a list of required language extensions. Each extension is identified by a URI reference. The extensions are encoded as textual data. See1.5.9
1.4.5.10.3 Representation of ‘systemLanguage’ values:
The attribute value is a comma-separated list of language names as defined in [http://www.ietf.org/rfc/rfc3066.txt]. The language names are encoded as textual data. See1.5.9
1.4.5.10.4 Representation of ‘externalResourcesRequired’ values:

Boolean ‘false|true’, represented with one bit.

Style

The style attribute is represented as a sequence of {Property, Value(s)} pairs. The Property is a token which identifies the property which will be set, and Value(s) is the property-specific representation of the value to which the property is being set. The Property token starts with a 4-bit code which is to be interpreted according to Table 2.

	0000
	‘fill’

	0001
	‘stroke’

	0010
	‘stroke-width’

	0011
	‘visibility’

	0100
	‘color’

	0101
	‘font-family’

	0110
	‘font-size’

	0111
	‘font-style’

	1000
	‘font-weight’

	1001
	‘reserved’

	1010
	‘display’

	1011
	‘fill-rule’

	1100
	‘reserved’

	1101
	EXT

	1110
	‘reserved’

	1111
	DONE with style

Table 2: Property identifiers for possible SVGTiny style properties
If the property to be defined is one of the properties listed in Table 2, the token consists of the associated 4-bit code. Otherwise, the EXT code word (1101) is generated, which is followed by a 6-bit code to complete the token. The 6-bit code is the ordinal of the property in the Property Index (Appendix L) of SVG Specification. The list of 6-bit property codes is given in Table 3.

The number of bits following the property type depends on the property type.

In an SVG document, the style properties can also appear as stand-alone attributes (For example, as in <rect fill="black" x="10" width="5" height="3">). In these cases, these attributes should be converted into style properties before or during the conversion to binary format.

	000000
	'alignment-baseline'
	100000
	'overflow'

	000001
	'baseline-shift'
	100001
	'pointer-events'

	000010
	'clip'
	100010
	'shape-rendering'

	000011
	'clip-path'
	100011
	'stop-color'

	000100
	'clip-rule'
	100100
	'stop-opacity'

	000101
	'color-interpolation'
	100101
	'stroke-dasharray'

	000110
	'color-profile'
	100110
	'stroke-dashoffset'

	000111
	'color-rendering'
	100111
	'stroke-linecap'

	001000
	'cursor'
	101000
	'stroke-linejoin'

	001001
	'direction'
	101001
	'stroke-miterlimit'

	001010
	'dominant-baseline'
	101010
	'stroke-opacity'

	001011
	'enable-background'
	101011
	'text-anchor'

	001100
	'fill-opacity'
	101100
	'text-decoration'

	001101
	'filter'
	101101
	'text-rendering'

	001110
	'flood-color'
	101110
	'unicode-bidi'

	001111
	'flood-opacity'
	101111
	'word-spacing'

	010000
	'font'
	110000
	'writing-mode'

	010001
	'font-size-adjust'
	110001
	Reserved

	010010
	'font-stretch'
	110010
	Reserved

	010011
	'font-variant'
	110011
	Reserved

	010100
	'glyph-orientation-horizontal'
	110100
	Reserved

	010101
	'glyph-orientation-vertical'
	110101
	Reserved

	010110
	'image-rendering'
	110110
	Reserved

	010111
	'kerning'
	110111
	Reserved

	011000
	'letter-spacing'
	111000
	Reserved

	011001
	'lighting-color'
	111001
	Reserved

	011010
	'marker'
	111010
	Reserved

	011011
	'marker-end'
	111011
	Reserved

	011100
	'marker-mid'
	111100
	Reserved

	011101
	'marker-start'
	111101
	Reserved

	011110
	'mask'
	111110
	Reserved

	011111
	'opacity'
	111111
	Reserved

Table 3: List of 6-bit style property codes
Transformations and Units

1.4.5.11 Representation of the 'TRANSFORM' Attribute

The transform attribute is represented as a sequence of {Type, Value(s)} pairs. The Type is a token which identifies the type of transform which will be set, and Value(s) is the type-specific representation of the value which quantifies the particular transform. The Type tokens are listed in Table 4.

	00
	Translate

	010
	Rotate

	011
	Scale

	100
	Matrix

	101
	SkewX

	110
	SkewY

	111
	DONE with transform

Table 4: Property identifiers for the transform properties
The transform values are encoded as integers, as defined in Section 2.1.

SpatialResolution: Translate property values, center coordinate values of the Rotate property, and e, f values of the Matrix property are scaled by spatialResolution.

ScaleResolution: Scale property values and a, b, c, d values of the matrix property are scaled by scaleResolution.

AngleResolution: SkewX and SkewY property values, and the rotation angle value of the Rotate property are scaled by angleResolution.

Some transform types have optional arguments.

matrix(<a> <c> <d> <e> <f>)
no optional parameters
translate(<tx> [<ty>])

ty is optional
scale(<sx> [<sy>])

sy is optional

rotate(<rotate-angle> [<cx> <cy>])
cx, cy are optional
skewX(<skew-angle>)

no optional parameters
skewY(<skew-angle>)

no optional parameters

All numeric values are real <number>s. The optional arguments are preceded by a 1-bit indicator whether the optional argument will be specified (1), or not (0).

1.4.5.12 Representation of the 'viewBox' Attribute

The viewBox values (x1, y1, x2, y2) are encoded as integers via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.13 Representation of the 'preserveAspectRatio' Attribute

Currently ‘xMidYMid’ and ‘none’ are the only values supported. Hence only one bit is being used. Bit values are ‘0’ for none and ‘1’ for xMidYMid.

1.4.5.14 Representation of Units

All coordinates and lengths in SVG can be specified with or without a unit identifier. When a coordinate or length value is a number without a unit identifier, then the given coordinate or length is assumed to be in user units.

user unit
0

cm

1000

mm

1001

inch

1010

pixel

1011

point

1100

pica

1101

percent
1110
Path Element

· Element identifier: 00000

· Optional attributes: ID, STYLE, TRANSFORM, EXT , TEST
· Required attributes: d (path data)

1.4.5.15 Representation of the Path Data

Path data is expected to cover a major part of the total information contained in a typical vector graphics animation. Thus, efficient representation of the path data has a crucial importance. As a result of seeking high efficiency, path data representation is one of the trickiest parts in the design of the bitstream syntax. This subsection presents this representation.

Path data starts with a 7-bit configuration header. This header, together with the additional configuration information that follows it, determines the codewords to be used in the representation. The configuration header consists of the following flags:

· C1: 0 states that both absolute and relative coordinates are used. 1 states that only one coordinate type is used.

· C2: 0 states that Z (closepath) is not used in the current path representation. 1 states that it is used.

· C3: 0 states that M (moveto) is not used in the current path representation. 1 states that it is used.

· C4: 0 states that L is used, and is the only lineto command. 1 states that it is either not used, or there are other types of lineto commands as well, such as H and V.

· C5: 0 states that L may not be used successively. 1 states that L may be used successively.

· C6: 0 states that none of the curve commands (such as C, S, Q, T) are used. 1 states that they at least one of them is used.

· C7: 0 states that A (elliptical arc) is used in the current path representation. 1 states that it is not used.

The additional configuration data is sent conditionally, as follows:

· A1:

· If (C1 == 1),

· 1-bit indicator of whether absolute (0) or relative (1) coordinates are used.

· For each coordinate representation type, (See Section 2.4 for details of representation)

· 1-bit indicator of whether the coordinate representation code length will be defined (1) or the default code length (0) , as may be defined as a function of the global size attributes and/or configuration parameters, will be used. If this indicator is 1,

· 4-bit representation of the code length (The same codebook will be used for representation of the angles).

· A4:
· If (C4 == 1),

· 2-bit indicator which is to be interpreted as follows:

· 00: no lineto commands are used,

· 01: L and H are used, (if there is only H, use this one)

· 10: L and V are used, (if there is only V, use this one)

· 11: L, H, and V are used. (if there is only H and V, use this one)

· A6:

· If (C6 == 1)

· 1-bit indicator which indicates whether C (cubic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether S (shorthand cubic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether Q (quadratic Bezier curve) is used (0) or not (1).

· 1-bit indicator which indicates whether T (shorthand quadratic Bezier curve) is used (0) or not (1).

After the configuration, the path data continues as a sequence of {Command, Arguments} pairs. Most of the arguments are encoded by using the appropriate coordinate representation codebook (The exceptions are some flags, which are 1-bit).

1.4.5.16 Encoding of the Commands

The codebook for the commands is constructed by choosing the available
 commands from the following list. The first available command is assigned the first codeword, etc. The length of the code words is a function of the total number D of the available commands. The code words are allocated as would be allocated by a Huffman code for n equi-probable symbols. In case of tie-breaks, the commands occurring earlier in the codebook are assigned shorter codewords (In fact, this process does not require an explicit construction of Huffman codewords, and the implementation is much simpler than it seems). With this assignment, code lengths vary between (log2n(and (log2n(.

List of commands: M, m, L1, l1, L2, l2, L3, l3, L4, l4, H, h, V, v, Z, C, c, S, s, Q, q, T, t, A, a, DONE.
Where Ln denotes n successive lineto commands.

Example Command Codebook:
Consider the following path data in SVG: d="M 64 42 l 1 5 M 88 42 l 1 5 M 76 48 L 76 45 M 73 55 h 7". For this path data, the command codebook is constructed as follows:

Both absolute and relative coordinates are used; Z is not used; M is used; L and H is used; L is not used successively, no curves used; no elliptical arcs used. Thus, the commands in the codebook are as follows: {M, m, L1, l1, H, h, DONE}. The code words for these commands are as follows:

· M:
00

· m:
010

· L1:
011

· l1:
100

· H:
101

· h:
110

· DONE:
111

In the particular path data, M occurs 4 times, l1 2 times, L1 one time, h one time, and DONE one time. Thus, for the representation of the commands in this path data, a total of 4*2+(2+1+1+1)*3 = 23 bits are spent.

1.4.5.17 Encoding of the arguments

Two different codebooks are used, depending on whether absolute or relative addressing is used. Each codebook is parameterized by a constant code length cl, as described in Section 2.1. The cl 's are encoded once for the whole path, and used throughout.

1.4.5.18 Example Encoding of Path Data

Let us consider the full encoding of the path data of the above example:

d="M 64 42 l 1 5 M 88 42 l 1 5 M 76 48 L 76 45 M 73 55 h 7".

The configuration header is composed as follows:

· Both absolute and relative coordinates are used, so C1=0,

· Z is not used, so C2=1,

· M is used, so C3=0,

· L and H is used, so C4=1,

· L is not used successively, so C5=1,

· No curves used, so C6=1,

· No elliptical arcs used, so C7=1.

Thus, the configuration header is 0101111 (7 bits).

Next, additional configuration data is composed:

· For absolute addressing, we choose cl=7, which can represent the maximum absolute coordinate in the path, 88, in 7 bits. To indicate this code length, 10111 is sent (5 bits) (For this example, we assume that the default cl for absolute mode is different than 7). First 1 indicates that a new cl is defined for absolute addressing, and the next four bits is the binary representation of cl=7.

· For relative addressing, we choose cl=4, which can represent the maximum relative coordinate in the path, 7, in 4 bits. To indicate this code length, 10100 is sent (5 bits) (For this example, we assume that the default cl for relative mode is different than 4). First 1 indicates that a new cl is defined for relative addressing, and the next four bits is the binary representation of cl=4.

· Since C4=1, a two-bit indicator which indicates that L and H are used, 01, is sent (2 bits).

After this, {Command, Argument } pairs can be transmitted. We use the command code book from the above example for encoding the commands. Absolute arguments are represented by 7-bit codewords, and relative arguments are represented by 4-bit codewords. The encoding goes as follows:

· M 64 42
:
00 (M), 1000000 (64), 0101010 (42)
16 bits
· l 1 5
:
100 (l1), 1000 (1), 1100(5)

11 bits
· M 88 42
:
00 (M), 1011000 (88), 0101010 (42)
16 bits
· l 1 5
:
100 (l1), 1000 (1), 1100(5)

11 bits
· M 76 48
:
00 (M), 1001100 (76), 0110000 (48)
16 bits
· L 76 45
:
011 (L1), 1001100 (76), 0101101(45)
17 bits
· M 73 55
:
00 (M), 1001001 (73), 0110111 (55)
16 bits
· h 7
:

110 (h), 1110 (7)

7 bits
· DONE
:
111 (DONE)

3 bits
113 bits are spent for the {Command, Argument } pairs, and 19 bits for the configuration. In total, the path data is encoded by 132 bits.

Basic Shapes

1.4.5.19 Element Declaration for 'Rectangle' (<rect>) Element

· Element identifier: 00010

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS
· Required attributes: width, height
1.4.5.19.1 Representation of COORDS
First, the codebook parameter cl is encoded, as described in Section 2.1. After this, the x- and y-coordinates of the rectangle are encoded as integers via Codebook-cl (in absolute mode), as described in Section 2.1. Integerization is performed via scaling by the global parameter spatialResolution, followed by rounding to nearest integer.

1.4.5.19.2 Representation of width and height
Width and height representations start with a 1-bit indicator of whether user coordinate system (0), or a unit based representation (1), will be used. If a unit based representation will be used, the unit must be specified further.

Then, the codebook parameter cl is encoded, as described in Section 2.1. After this, the width and the height of the rectangle are encoded as nonnegative integers via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.20 Element Declaration for 'Circle' (<circle>) Element

· Element identifier: 00011

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS
· Required attributes: r (Radius)

1.4.5.20.1 Representation of COORDS
Same as the representation of COORDS of rectangles, as described in Section 2.4.

1.4.5.20.2 Representation of radius
Radius representation starts with a 1-bit indicator of whether user coordinate system (0), or a unit based representation (1), will be used. If a unit based representation will be used, the unit must be specified further.

Then, the codebook parameter cl is encoded, as described in Section 2.1. After this, the radius is encoded as a nonnegative integer via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.21 Element Declaration for 'Ellipse' (<ellipse>) Element

· Element identifier: 00100

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS
· Required attributes: rx, ry (x-axis radius and y-axis radius, respectively)

1.4.5.21.1 Representation of COORDS
Same as the representation of COORDS of rectangles, as described in Section 2.4.

1.4.5.21.2 Representation of rx and ry
Radii representations start with a 1-bit indicator of whether user coordinate system (0), or a unit based representation (1), will be used. If a unit based representation will be used, the unit must be specified further.

Then, the codebook parameter cl is encoded, as described in Section 2.1. After this, the radius of the ellipse are encoded as nonnegative integers via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.22 Element Declaration for 'Line' (<line>) Element

· Element identifier: 10100

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST
· Required attributes: x1, y1, x2, y2 (coordinates of the end points of the line)

1.4.5.22.1 Representation of x1, y1, x2, y2
First, the codebook parameter cl is encoded, as described in Section 2.1. After this, x1, y1, x2, and y2 are encoded as integers via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.23 Element Declaration for 'Polyline' (<polyline>) Element

· Element identifier: 10010

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST
· Required attributes: x1, y1, x2, y2, … , xn, yn (coordinates of the vertices of the polyline)

1.4.5.23.1 Representation of x1, y1, x2, y2, … , xn, yn

First, the number of vertices n is encoded as a nonnegative integer via Codebook-5 (in absolute mode), as described in Section 6.23.

Then, the codebook parameter cl (which will be used for encoding the vertices) is encoded as described in Section 2.1. After this, x1, y1, x2, y2, … , xn, yn are encoded as integers via Codebook-cl (in absolute mode), as described in Section 2.1.
1.4.5.24 Element Declaration for 'Polygon' (<polygon>) Element

· Element identifier: 10001

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST
· Required attributes: x1, y1, x2, y2, … , xn, yn (coordinates of the vertices of the polygon)

1.4.5.24.1 Representation of x1, y1, x2, y2, … , xn, yn

Same as the representation of the vertices of polyline.

Text

1.4.5.25 Element Declaration for 'Text' (<text>) Element

· Element identifier:00001

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST, COORDS, rotate,
· Required attributes: none

1.4.5.25.1 Representation of COORDS
Same as the representation of COORDS of rectangles, as described in Section 2.4.

1.4.5.25.2 Representation of rotate
First, the codebook parameter cl is encoded, as described in Section 2.1. After this the rotation values are encoded as integers via Codebook-cl (in absolute mode).

1.4.5.25.3 Representation of text data
In SVG textual content is defined in terms of a sequence of XML characters, where each character is defined by a particular Unicode code point The Unicode Standard defines three encoding forms that allow the same data to be transmitted in a byte, word or double word oriented format (i.e. in 8, 16 or 32-bits per code unit). All three encoding forms encode the same common character set and can be efficiently transformed into one another without loss of data.

UTF-8 (ISO/IEC 10646) is a way of transforming all Unicode characters into a variable length encoding of bytes. It has the advantages that the Unicode characters corresponding to the familiar ASCII set have the same byte values as ASCII. Therefore UTF-8 encoding is suitable for textual representation.

Unicode characters from the BASIC LATIN collection are represented in UTF-8 in accordance with ISO/IEC 4873, i.e. single octets with values ranging from 20 to 7E.

First the length of the text string is encoded as integer value, after this the text string is encoded in UTF-8.
Color

SVG supports multiple color representation all specified in sRGB space. A color can be specified by its

· name (“red”),

· 4 bit per color RGB value(F00),

· 8 bit per color RGB value (FF0000)

or it can be “none”.

The color resolution field defines the color depth of the CVG binary content, for example if the SVG content has defined color in 8 bits per color component and the color resolution is set to 4 bits per color, the SVG color is transformed into a 4 bit per color component. The color resolution field is set by the encoder.

The color resolution on the decoder defines the color depth of the terminal display. It is fixed for each terminal due to its capabilities. Incoming CVG stream is converted into the color resolution, in this case a color content can be send to a black/white terminal and still rendered correctly.

Each color data set contains represented with two parts as depicted in Figure 7. The first bit represents the state “none” for the color. Later on each component of the RGB color is encoded as integer value with respect to the color resolution field and its initial value from the SVG content.

Figure 6: Color Representation

Color Resolution field is defined as:

001 1bit color resolution (black/white)

010 4bit color resolution

011 8bit color resolution

100 - 111 Reserved

Linking

1.4.5.26 Element Declaration for 'a' (<a>) Element

· Element identifier: 10000

· Optional attributes: ID, STYLE, TRANSFORM, EXT, TEST
· Required attributes: xlink:href

1.4.5.26.1 Representation of xlink:href (#URI)

The string (#URI) is encoded as integer textual data, as described in Section 1.5.9.1.3.
Animation

1.4.5.27 Element Declaration for 'Animate' (<animate>)Element

· Element identifier: 01010

· Optional attributes: ID, EXT, TEST, xlink:href, begin, dur, repeatCount, values, from, to, by, target id, fill, additive, accumulate
· Required attributes: attributeName
1.4.5.27.1 Representation of xlink:href
The URI is represented as textual data, as described in Section 1.5.11.1.1
1.4.5.27.2 Representation of target id

The id of the target is encoded in n-bits, where n is determined by the total number of object id's at the moment of coding the animation. The target id should be omitted if the Animate element is defined as a child element to the targeted graphical element.

1.4.5.27.3 Representation of begin, dur
This field is represented as a positive integer, which is translated into a time according to the time resolution specified in the global configuration. First, the codebook parameter cl is encoded, as described in Section 2.1. Then, the positive integer is encoded as a nonnegative integer via Codebook-cl (in absolute mode), as described in Section 2.1.

1.4.5.27.4 Representation of RepeatCount

RepeatCount can have a fractional part, up to 4 bits after the point, or it can be "indefinite". The representation starts with a 1-bit indicator which indicates whether the repeat count is indefinite (0), or a finite count representation will follow (1). If the first indicator is 1, another 1-bit indicator follows. This indicates whether an integer (0) or a fixed-point rational (1) representation will be used. The integer part is represented by a Codebook-7 absolute representation. If there is a fractional part, it is represented in 4 bits.

1.4.5.27.5 Representation of from, to, by

From, to and by are represented as real numbers, as described in Section 2.2
1.4.5.27.6 Representation of values
Values are represented as a path data, as described in Section 1.5.7.1
1.4.5.27.7 Representation of fill, additive and accumulate

fill (REMOVE=0 | FREEZE=1)

additive (REPLACE=0 | SUM=1)

accumulate (NONE=0 | SUM=1)

1.4.5.27.8 Representations of attributeName

attributeName is a 3-bit specifier of the attribute. The interpretation of the 3-bit value is as follows:

000

ID
001

TRANSFORM
010

STYLE
011

COORDS
100

SIZE
101-110
reserved

111

EXT
The Table 5 presents the code list for animated style attributes.

 Table 5: Animated style attributes
	Other
	000
	3 bits
	

	Clip
	000
	000
	Additive

	Color
	000
	001
	Additive

	Cursor
	000
	010
	Additive

	display
	000
	011
	Additive

	overflow
	000
	100
	Additive

	visibility
	000
	101
	Additive

	Text
	001
	4 bits
	

	letter-spacing
	001
	0000
	Additive

	Text-decoration
	001
	0001
	Additive

	word-spacing
	001
	0010
	Additive

	alignment-baseline
	001
	0011
	Additive

	baseline-shift
	001
	0100
	Additive

	dominant-baseline
	001
	0101
	Additive

	kerning
	001
	0110
	Additive

	Text-anchor
	001
	0111
	Additive

	clipping/masking/compositing
	010
	3 bits
	

	Clip-path
	010
	000
	

	Clip-rule
	010
	001
	

	mask
	010
	010
	

	opacity
	010
	011
	

	filter effect properties
	011
	3 bits
	

	filter
	011
	000
	

	flood-color
	011
	001
	

	flood-opacity
	011
	010
	

	lighting-color
	011
	11
	

	gradient / interactivity properties
	100
	2 bit
	

	pointer-events
	100
	00
	

	stop-color
	100
	01
	

	stop-opacity
	100
	10
	

	color and painting
	101
	5 bits
	

	color-interpolation
	101
	00000
	

	color-interpolation-filters
	101
	00001
	

	color-profile
	101
	00010
	

	color-rendering
	101
	00011
	

	Fill
	101
	00100
	

	fill-opacity
	101
	00101
	

	fill-rule
	101
	00110
	

	image-rendering
	101
	00111
	

	marker
	101
	01000
	

	marker-end
	101
	01001
	

	marker-mid
	101
	01010
	

	marker-start
	101
	01011
	

	shape-rendering
	101
	01100
	

	stroke
	101
	01101
	

	stroke-dasharray
	101
	01110
	

	stroke-dashoffset
	101
	01111
	

	stroke-linecap
	101
	10000
	

	stroke-linejoin
	101
	10001
	

	stroke-miterlimit
	101
	10010
	

	stroke-opacity
	101
	10011
	

	stroke-width
	101
	10100
	

	Text-rendering
	101
	10101
	

	Font
	110
	4 bits
	

	Font
	110
	0000
	additive

	Font-family
	110
	0001
	

	Font-size
	110
	0010
	

	Font-size-adjust
	110
	0011
	

	Font-stretch
	110
	0100
	

	Font-style
	110
	0101
	

	Font-variant
	110
	0110
	

	Font-weight
	110
	0111
	

1.4.5.28 Element Declaration for 'Set' (<set>) Element

· Element identifier: 01011

· Optional attributes: ID, EXT, TEST, xlink:href, begin, dur, repeatCount, fill, target id
· Required attributes: attributeName, to

1.4.5.28.1 Representations of attributeName and to

attributeName is a 3-bit specifier of the attribute. The interpretation of the 3-bit value is as follows:

000

ID
001

TRANSFORM
010

STYLE
011

COORDS
100

SIZE
101-110
reserved

111

EXT
The representation of to is attribute dependent.
1.4.5.29 Element Declaration for 'AnimateMotion' (<animateMotion>) Element

· Element identifier: 01100

· Optional attributes: ID, EXT, TEST, xlink:href, begin, dur, repeatCount, fill, values, from, to, by, target id, path, additive, accumulate
· Required attributes: none

1.4.5.29.1 Representation of path

It is the same as the data representation of path element, as described in Section 1.5.7.

1.4.5.30 Element Declaration for 'AnimateTransform' (<animateTransform>) Element

· Element identifier: 01101

· First required attribute: type
· Optional attributes: ID, EXT, TEST, xlink:href, begin, dur, repeatCount, fill, values, from, to, by, target id, path, additive, accumulate
· Required attributes: attributeName
1.4.5.30.1 Representation of type

(TRANSLATE=0 | SCALE=100 | ROTATE=101 | SKEWX=110 | SKEWY=111)

1.4.5.30.2 Representation of path

It is the same as the data representation of path element, as described in Section 1.5.7
1.4.5.31 Element Declaration for 'AnimateColor' (<animateColor>) Element

· Element identifier: 11001

· Optional attributes: : ID, EXT, TEST, xlink:href, begin, dur, repeatCount, fill, values, from, to, by, target id, path, additive, accumulate
· Required attributes: attributeName
Fonts

1.4.5.32 Element Declaration for 'Font' () Element

· Element identifier: 01111

· Optional attributes: ID, STYLE , EXT, externalResourcesRequired, horiz-origin-x, horiz-origin-y, vert-origin-x, vert-origin-y, horiz-adv-y
· Required attributes: horiz-adv-x
An SVG font is a font defined using SVG's ‘font' element. All the optional and requires attributes of the Font Element are real number values, See Section 2.1. Each 'font' element must have a ‘font-face’ child element which describes various characteristics of the font.

1.4.5.32.1 Representation of externalResourcesRequired values

See Section 1.5.4.2.4
1.4.5.33 Element Declaration for ‘Font-Face’ (<font-face>) Element

· Element identifier: 10101

· Optional attributes: ID, STYLE , EXT , font-family, font-style, font-variant, font-weight, font-stretch, font-size, unicode-range, units-per-em, ascent, descent, widths, bbox
· Required attributes: none
1.4.5.34 Element Declaration for 'Glyphs' (<glyphs>) Element

· Element identifier: 01110

· Optional attributes: ID, STYLE , EXT, unicode, glyphName, d, horiz-adv-x, vert-adv-y, vert-origin-x, vert-origin-y
· Required attributes: none
The graphics that make up the 'glyph' can be either a single path data specification within the d attribute or arbitrary SVG as content within the 'glyph'. CVG supports a single path data speciation, which is handled similar to path data representation, See Section 1.5.7.1.

1.4.5.35 Element Declaration for 'Missing-Glyph' (<missing-glyph>) Element

· Element identifier: 10110

· Optional attributes: ID, STYLE , EXT, unicode, glyphName, d, horiz-adv-x, vert-adv-y, vert-origin-x, vert-origin-y
· Required attributes: none
1.4.5.36 Element Declaration for 'Hkern' (<hkern>) Element

· Element identifier: 10111

· Optional attributes: ID, EXT, g1, g2, u1, u2
· Required attributes: k
1.4.5.37 Element Declaration for 'Vkern' (<vkern>) Element

· Element identifier: 11000

· Optional attributes: ID, EXT, g1, g2, u1, u2
· Required attributes: k
Metadata

1.4.5.38 Element Declaration for 'metadata' (<metadata>) Element

· Element identifier: 1111001

· Optional attributes: ID, EXT,
· Required attributes: none
CVG encodes metadata content as CDATA (UNICODE text) and leave it to the viewer how to handle the content.
1.4.5.39 Element Declaration for 'CDATA' Element

· Element identifier: 00110

· Optional attributes: none
· Required attributes: none
This is not a SVG element but defined to identify textual data in the text element and if any other type of textual data is represented inside any element.

2 Representation of Basic Data Types

All the basic data types are scaled with one of the resolution values:

· “Spatial Resolution" field, which denotes the fixed-point sub-integer resolution used in the representation of coordinates, sizes, etc.

· "Time Resolution" field, which specifies the resolution used in time representations. The value of this field times 10 ms. gives the increments used in the time representations. For example, if this field is 5, the time representations are multiplied by 50 milliseconds to get the correct time.

· "Scale resolution" field. (As multiples of 0.01)

· "Angle resolution" field. (In terms of degrees)

 and represented by integers inside the CVG format.

2.1 Representation of Integer

An integer is specified as an optional sign character ('+' or '-') followed by one or more digits "0" to "9". If the sign character is not present, the number is non-negative. Unless stated otherwise for a particular attribute or property, the range for a integer encompasses (at a minimum) -2147483648 to 2147483647.
2.1.1 Representing a Nonnegative Integer val via Codebook-cl

Consider the representation of a positive integer value val of unknown dynamic range, according to a codebook parameterized by a constant code length cl (Note: This representation can be used only when val is known from the context to be a nonnegative integer). The method of encoding is as follows:

· Each value val in the range [0, 2cl-2] is encoded by a cl-bit unsigned binary representation of val.

· If val is greater than 2cl-2, a codeword consisting of cl consecutive ones (cl-bit unsigned binary representation of 2cl-1) indicates this. Then, encoding iterates on val-2cl+1. The iteration continues this way, until the residue is in the range [0, 2cl-2].

Example:
Representation of val=9 by Codebook-4 is "1001". The representation of val=18 by Codebook-4 is "1111 0101".

2.1.2 Representation of cl, and Modes of Representation

In some contexts, it is useful to signal the value of cl explicitly. In these cases, the value of cl is represented as follows:

First, there is a 1-bit indicator of whether the cl to be used is equal to the default cl (0) , as defined by the global size attributes, configuration parameters, and mode of representation; or it is different (1) than the default cl . If this indicator bit is 1, a 4-bit representation of cl follows (Practically, cl cannot be larger than 14. A value of 15 is reserved for extensions.).

When the viewport size is less than or equal to 128x128, the default cl is 7 for the absolute mode of representation. (This mode is the main mode of representation.)

In relative mode of representation, the default cl value is 4. In this mode, an offset of 2cl-1-1 is added to val before representation. So, for default cl, val+7 is encoded instead of val. (This mode is useful in encoding possibly negative numbers. See the example in Section 2.1.5 below.)

2.1.3 Representing a Nonnegative Integer of Unknown Upper Bound

A nonnegative integer of unknown upper bound is represented by sending the code length cl first, and then using codebook-cl for the representation of the nonnegative integer.
Example:
In absolute mode,

val=65 can be represented by "0 1000001" (8 bits);

val=3 by "1 0010 11" (7 bits) or by "0 0000011" (8 bits); and

val=130 by "1 1000 10000010" (13 bits) or by "0 1111111 0000011" (17 bits).

2.1.4 Representing an Integer val via Codebook-cl

Now let us consider the representation of an integer value val of unknown dynamic range, according to a codebook parameterized by a constant code length cl. The method of encoding is as follows:

· Each value val in the range [0, 2cl-2] is encoded by a cl-bit unsigned binary representation of val.

· If val is outside this interval, a codeword consisting of cl consecutive ones (cl-bit unsigned binary representation of 2cl-1) indicates this. Then, 1-bit representation of whether val is less (0) than 0, or it is greater (1) than 2cl-2 follows. If it is less than 0, 1-val is encoded as a nonnegative integer via Codebook-cl. Otherwise, val-2cl+1 is encoded as a nonnegative integer via Codebook-cl.

2.1.5 Representing an Integer of Unknown Dynamic Range

An integer of unknown dynamic range is represented by sending the code length cl first, and then using codebook-cl for the representation of the integer.

Example:
In absolute mode, (default cl=7)

val=65 can be represented by "0 1000001" (8 bits);

val= -6 by "1 0011 111 0 101" (12 bits).

In relative mode, (default cl=4)

val=9 can be represented by "0 1111 1 0001" (10 bits) or "1 1001 10000" (10 bits);

val=7 can be represented by "0 1110" (5 bits)

val= -6 by "0 0001" (5 bits).
2.2 Representation of Real Number Values

CVG represents real number values as integers. Conversion of real number values to integer is performed via scaling by one of the global parameter {spatial, time, scale, angle} Resolution, followed by rounding to nearest integer. Afterwards the integer values are represented as in Section 2.1
Spatial Resolution n specifies the number of binary digits after the point. It means: multiply the real number with 2^n to compute the integer representation at Encoder; divide the integer number with 2^n to compute the real number at Decoder.

For example, if this field has a value of 3, the coordinate values will be represented by 3 bits after the point, or in other words in increments (or resolution) of 1/8.

Example 1
Spatial resolution=1

x and y values inside the original SVG FILE: <rect x=10.5 y=100>

x and y values as integer inside CVG: [rect][x][21][y][200]

x and y values in the receiver after decoding: rect(10.5,100)

2.3 Length

A length is a distance measurement. The format of a <length> is a <number> optionally followed immediately by a unit identifier. CVG uses the following binary representation for the length, where unit is represented as in Section 1.5.6.4 and the number as in the previous section :

Figure 7: Length Representation

2.4 Coordinate

A <coordinate> represents a <length> in the user coordinate system that is the given distance from the origin of the user coordinate system along the relevant axis (the x-axis for X coordinates, the y-axis for Y coordinates).

First, the codebook parameter cl is encoded, as described in Section 2.1. After this, the x- and y-coordinates of the rectangle are encoded as integers via Codebook-cl (in absolute mode). Integerization is performed via scaling by the global parameter spatialResolution, followed by rounding to nearest integer.

R

none

G

B

Var. Bits

 Var.Bits

unit

number

 Var.Bits

Main Header

Sub Header

Body

46 Bits

Variable # Bits

28 Bits

13 Bits

Configuration

Version

Type Id

5 Bits

Variable #Bits

Variable # Bits

Variable # Bits

Definitions

 Var.Bits

Global Attributes

 Var.Bits

Element 2

 Var.Bits

Elementn-1

Element 1

El. Attributes

Has Children

El. Size

El.Identification

Var. Bits

File Size

Variable # Bits

� In this context, "available" means possible occurrence in the current path data, and is determined by the configuration part of the path data.

Page: 1/33

Page: 33/33

