Source:	BBC
Title:	5GMSA Domain Model and API Design Principles
Agenda Item:	4 or 6

[bookmark: _GoBack]Context
The deadline for Rel16 stage 2 for 5G Media Streaming Architecture was May 2019 and Rel16 stage 3 was supposed to be completed at SA4#107. However, an extension until SA#88 (in June 2020) was requested at SA4#107 by sending an exception sheet [S4200332] to SA#87.
There are therefore two more SA4 meetings (SA4#108 and SA4#109) available to discuss this topic.
As SA4 attempts to specify stage 3 APIs for 5GMSd Application Function it has become apparent that certain key design decisions at stage 2 have not yet been satisfactorily been agreed, leading to divergent design at stage 3. This contribution aims to stimulate debate on the key design considerations with the aim of reaching consensus on a common approach going forward. Making decisions at this point will hopefully save time later and make future stage 3 contributions more consistent with each other.
As a reminder, reference point M1d encompasses at least three distinct logical configurationsactivities:
· Configuration of content Iingest Session provisioning (for subsequent content ingest at M2d).
· This may include the registration of X.509 server certificates that the 5GMSd Application Server will present at M4d on behalf of the M5MSd Application Provider.
· Configuration of Consumption Reporting provisioning (for subsequent reporting at M5d).
· Configuration of Application Service provisioning (for subsequent Dynamic Policy setup at M5d).
· This seems to be congruent with the concept of a Provisioning Session between a 5GMDd Application Provider and a 5GMSd Application Function, which logically encompasses Ingest and Consumption Reporting.
RESTful resource design considerations
At least three different design philosophies are possible for the provisioning part of the 5GMSd Application Function exposed at reference point M1d:
1. Application Service Configuration (a.k.a. Provisioning Session) is the single monolithic provisioning documentresource. The Policy Template, Ingest Session Configuration and Consumption Reporting Configuration are just subsections of this documentresource.
· This was the design philosophy captured in Figure 1 overleaf, as documented in TS 26.501 after the application of CR0007 [S4200283] and CR0008 [S4200284], both agreed at SA4#107.
2. Ingest Session Configuration and Consumption Reporting Configuration are independent documentsresources from Application Service Configuration, at the same level of importance. An Application Service Configuration may reference one Ingest Session Configuration by means of some cross-referencing identifier.
· This is implicitly the design philosophy in the latest editor’s draft of TS 26.512 [S4200279], as reflected in Figure 2.
3. Ingest Session Configuration and Consumption Reporting Configuration are independent documentsresources from Application Service Configuration but are structured as sub-resources of it.
The choice between these design philosophies will drive the design of the RESTful URL paths. The domain model diagram should be updated (if necessary) to reflect the choice.
TSG SA4 MBS subworking group meetingcall on 5GMS3	S4-AHI934944
613th February 2020	revision of S4AHI934

Page 1 of 2
		Page: 2/2

[image:]
[bookmark: _Ref31639689]Figure 1: 5GMSA Dynamic policy domain model
(as agreed at SA4#107)

[image:]
[bookmark: _Ref31639918]Figure 2: 5GMSA Provisioning domain model
(expanded after SA4#107)
[bookmark: _Ref31642008]RESTful path design considerations
The design of the RESTful paths should follow on from the agreed resource design.
There are, however, additional design considerations to be taken into account, stemming from the fact that some 5GMSA reference points encompass multiple logical APIs.
Self-revealing design
The design of the RESTful paths should show the underlying design intent clearly. With that aim in mind there is a strong case to include both the reference point name and the logical API name in the URL path.
Microservice despatch implementation
It may be convenient to implement each of the logical APIs as a separate microservice. A front door request despatcher may examine some initial path elements of the URL in order to select the correct microservice to handle a given request. Being able to examine a fixed number of initial path elements in the URL greatly simplifies the logic that this routing function must implement.
All three options in in Table 2 satisfy this requirement, but Option F requires the despatcher to examine the fewest path elements to correctly route a request.
API version control
It is good design practice to incorporate a token in the RESTful URL representing the API version number. When a breaking API change is subsequently made, a new version token is specified. All RESTful resources sitting below the path element are affected by this change.
To reduce the effect of such breaking API changes, it is best to limit the scope of the path. An obvious division is at the logical API level (in the case of Option 2 above). This favours Option F in Table 2.
RESTful URL design options
Monolithic documentresource (Option 1)
With Option 1, all of the configuration parameters live in a single monolithic Application Service Configuration (a.k.a. Provisioning Session) documentresource.
Table 1: Options for RESTful path design with interdependentmonolithic resource structure
	Option A
	{apiRoot}/3gpp-m1d/v1/provisioning/application-service/{application-service-id}

	Option B
	{apiRoot}/3gpp-m1d-provisioning/v1/application-service/{application-service-id}

	Option C
	{apiRoot}/3gpp-m1d-application-service/v1/{application-service-id}

With Option 1, the choice of URL format is largely a stylistic one.
Interdependent resources (Option 2)
Taking the M1d example, three possible options are shown in Table 2 corresponding to Option 2 above. (These are not exhaustive.)
[bookmark: _Ref31642886]Table 2: Options for RESTful path design with interdependent resource structure
	Option D
	{apiRoot}/3gpp-m1d/v1/provisioning/certificate/{certificate-id}
{apiRoot}/3gpp-m1d/v1/provisioning/ingest-session/{ingest-session-id}
{apiRoot}/3gpp-m1d/v1/provisioning/consumption-reporting/{consumption-reporting-id}
{apiRoot}/3gpp-m1d/v1/provisioning/application-service/{application-service-id}

	Option E
	{apiRoot}/3gpp-m1d-provisioning/v1/certificate/{certificate-id}
{apiRoot}/3gpp-m1d-provisioning/v1/ingest-session/{ingest-session-id}
{apiRoot}/3gpp-m1d-provisioning/v1/consumption-reporting/{consumption-reporting-id}
{apiRoot}/3gpp-m1d-provisioning/v1/application-service/{application-service-id}

	Option F
	{apiRoot}/3gpp-m1d-certificate/v1/{certificateid}
{apiRoot}/3gpp-m1d-ingest-session/v1/{ingest-session-id}
{apiRoot}/3gpp-m1d-consumption-reporting/v1/{consumption-reporting-id}
{apiRoot}/3gpp-m1d-application-service/v1/{application-service-id}

With Option 2, any Certificates, then the Ingest Session Configuration and Consumption Reporting Configuration are first created, then they are referenced from the Application Service Configuration when it is created.
Sub-resources (Option 3)
If we instead follow Option 3 above (a hierarchy of sub-resources at M1d) a different set of options emerges. Table 3 below shows one possible set of options based on the principle that the Application Service Configuration is the root resource and the Ingest Session Configuration and Consumption Reporting Configuration resources are sub-resources:
[bookmark: _Ref31643507]Table 3: Options for RESTful path design with sub-resources
	Option G
	{apiRoot}/3gppm1d/v1/provisioning/applicationservice/{applicationserviceid}
{apiRoot}/3gppm1d/v1/provisioning/applicationservice/{applicationserviceid}/certificate
{apiRoot}/3gppm1d/v1/provisioning/applicationservice/{applicationserviceid}/ingestsession
{apiRoot}/3gppm1d/v1/provisioning/applicationservice/{applicationserviceid}/consumption-reporting

	Option H
	{apiRoot}/3gppm1dprovisioning/v1/applicationservice/{applicationserviceid}
{apiRoot}/3gppm1dprovisioning/v1/applicationservice/{applicationserviceid}/certificate
{apiRoot}/3gppm1dprovisioning/v1/applicationservice/{applicationserviceid}/ingestsession
{apiRoot}/3gppm1dprovisioning/v1/applicationservice/{applicationserviceid}/consumptionreporting

	Option I
	It doesn’t make sense to place the resource name in a leading path element.

With Option 3, the Application Service Configuration resource is first created, then Certificates, the Ingest Session Configuration and Consumption Reporting Configuration are added as sub-resources of it.
Recommendation
In order to maintain maximum flexibility of implementation, it is recommended that the subworking group adopts Option 2 (interdependent resources) rather than Option 3 (sub-resources) as an underlying principle for API design.
In order to decouple versioning from the logical API, and in order to optimise the despatch of URLs to different handlers, it is recommended that the subworking group adopts Option F as a common URL style.
If this is not acceptable, Option E is recommended as a less optimal second choice.
image1.emf
Media Session HandlerApplication Service Configuration5GMSd Aware Application5GMSd Application ProviderIngest Session ConfigurationConsumption Reporting ConfigurationPCC Rule11..*Dynamic Policy Instance factory("Media Context") endpoint URLand valid policy template aliasespassed to 5GMSd Aware Applicationsvia out-of-scope M8d10..*creates(M5d)application service configuration identifier10..10..*0..1presentation manifest URL (M4d)...NOTE 1:The application service provider identifier is included as an opaque path element in the Application Instance ("Media Context") endpoint URL previously delivered to the 5GMSd Aware Application.This URL is used in Step 8 to create a new Application Instance ("Media Context").M1d resourcevalid policy templates[]0..*1uses(M6d)11provisions(M1d)10..*comprisesM1d resourceApplication Service ProviderPolicy Templateapplication service provider identifier5GMSd functionOther 5GS functionNon-5GS functionLegendDynamic policydata model entityingest session configurationconsumption reporting configuration11referencesinstantiates(N5)instantiates(N33, N5)Provisioningdata model entityNOTE 2:In Step 9, we first create a new Dynamic Policy Instance (POST operation) using the URL returned in Step 8, and then we bind the newly created instance to a flow description and Application Service Configuration (PUT/PATCH operation).Dynamic Policy Instancedynamic policy instance identifiertraffic descriptorpolicy template aliasapplication service configuration identifierpolicy template alias...M5d resource1111references

image2.emf
Provisioning Session?«resource»Application Service Configurationapplication service configuration identifiervalid policy templates[]ingest identifierconsumption reporting configurationMedia Session Handler5GMSd Aware Application5GMSd Application ProviderConsumption Reporting ConfigurationPCC RulePolicy Template«resource»Ingest ConfigurationCaching ConfigurationDistribution ConfigurationOrigin ConfigurationCaching Directives«resource»Server Certificate«resource»Content Preparation TemplateURL Signing Rule«resource»Dynamic Policy Instance11..*Dynamic Policies endpoint URLand valid policy template aliasespassed to 5GMSd Aware Applicationsvia out-of-scope M8d10..*creates(M5d)0..1...0..*1uses(M6d)11provisions(M1d)10..*comprises5GMSd functionOther 5GS functionNon-5GS functionLegendDynamic policydata model entity11referencesinstantiates(N5)instantiates(N33, N5)Provisioningdata model entitypolicy template identifier...ingest identifier1111caching directives[]url signing rules[]distribution configurationorigin configurationcaching configurationprotocol...url patterncertificate identifier...entry point10..*url pattern10..*references10..*references10..*10..*provisions(M1d)0..11references10..*...origindynamic policy instance identifiertraffic descriptorapplication service configuration identifierpolicy template identifier1111references«resource»Application Service Providerapplication service provider identifiertarget10..*provisions(M1d)10..*provisions(M1d)10..*provisions(M1d)

