
3GPP TSG-SA4 MBS SWG AH#104
S4-AHI801
14th June 2018

	CR-Form-v11.2

	PSEUDO CHANGE REQUEST

	

	
	26.850
	CR
	xxx
	rev
	x
	Current version:
	1.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	pCRs to TR 26.850

	
	

	Source to WG:
	Expway

	Source to TSG:
	S4

	
	

	Work item code:
	FS_MBMS_IoT
	
	Date:
	2018-04-03

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	The present document proposes the un-resolved aspects in the TR 26.850 and the editorial changes.

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	First Change

1
Scope

The present document studies and evaluates the enhancements on service layer to support massive file delivery for IoT devices. An IoT device that has the capabilities or can support the regular MBMS operations of a regular device (e.g. smart phone, tablet) could apply the specification described in 3GPP TS 26.346. The present document describes the studies for the IoT devices with various constraints (e.g. power, storage, processing). An IoT device described in the present document could be for instance a NB-IoT device or an eMTC device.

The study considers the enhancements/simplifications in the following areas:

-
Define the requirements and constraints for different IoT device categories.

-
Review the existing multicast/broadcast service architecture to support MBMS delivery for IoT devices.

	Second Change

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ADPD
Associated Delivery Procedure Description

CoAP
Constrained Application Protocol

DASH
Dynamic Adaptive Streaming over HTTP
eMBMS
Evolved Multimedia Broadcast Multicast Services

eMTC
enhanced Machine Type Communication
FLUTE
File deLivery over Unidirectional Transport

IoT
Internet of Things

MPD
Media Presentation Description

NB-IoT
NarrowBand IoT

RTOS
Real-Time Operating System

RTP
Real-Time Transport Protocol
USBD
User Service Bundle Description
USD
User Service Description
UTC
Universal Time Coordinated
XML
Extensible Markup Language

	Third Change

6
MBMS for NB-IoT device categories

6.1
MBMS User Service Announcement Profile

3GPP TS 26.346 [2] defines different procedures, mechanisms and protocols for MBMS User Services. The table 6.1-1 shows the profiling for each IoT category:

Table 6.1-1: List of supported procedures and methods for low-end and high-end IoT categories

	
	
	Recommended for Low-end IoT category Profile
	Recommended for High-end IoT category Profile

	Service Announcement
	MBMS bearer
	Yes (Note 1)
	Yes

	
	Interactive Announcement Function
	No
	Yes

	
	Point-to-Point push bearer
	
Yes
	Yes

	Associated delivery procedure
	File Repair – Byte Range based
	Yes (Note 3)
	Yes

	
	File Repair – Symbol based
	No
	No

	
	Reception Report
	Yes (Note 3)
	Yes

	
	Consumption Report
	No
	No

	Delivery method
	Download
	Yes
	Yes

	
	Streaming
	No
	No

	
	Group communication
	No
	No

	
	Transparent
	No
	No

	NOTE 1:
In clause 5.2.3.1 of 3GPP TS 26.346, the possibility to download session parameters from an HTTP server resolved from the Service Announcement may not be applicable for low-end IoT category. A CoAP based solution instead of HTTP may be more efficient.

NOTE 2:
 In clause 5.2.4 of 3GPP TS 26.346, the HTTP URL used by the UE to obtain USD via unicast may not be applicable to low-end IoT category. A CoAP based solution for Interactive Announcement Function instead of HTTP may be more appropriate.

NOTE 3:
File repair and reception report messages using HTTP protocol in a single TCP connection (3GPP TS 26.346 clauses 9.3 and 9.4) is not desirable in the low-end IoT category. Simplified file repair and reception report procedures are preferable - (e.g. file repair and reception report based on CoAP, according to the methods described in clauses 7.3.1 and 7.3.2 in this TR).

6.2
MBMS IoT profiles for file download delivery method

6.2.1
Introduction

Clause L.4 in 3GPP TS 26.346 specifies the MBMS download profile for both non-real-time (NRT) file delivery services as well as DASH-formatted streaming services, using the FLUTE protocol. FLUTE uses FDT instance to indicate the attributes and elements required for the delivery. The FDT attributes and elements are categorized at the FDT-Instance level (i.e., the FDT-Instance element of the FDT) and at the File level (i.e., the File element of the FDT). The high-end IoT category may reuse the MBMS download profile but does not require the functionalities for multimedia services (e.g. DASH). Table 6.1-1 shows the supported high-level capabilities in download delivery method for IoT devices.

Table 6.2-1: Supported capabilities in download delivery method

	
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	FLUTE session setup and control with RTSP
	No (Note 1)
	No (Note 1)
	Optional

	SDP for Download Delivery Method
	Yes
	Yes
	Yes

	XML schema and processing
	No (Note 2)
	Optional (Note 3)
	Yes

	NOTE 1:
3GPP TS 26.346 clause L.4.6 specifies "FLUTE session setup and control with RTSP" as an option supported by the UE, IoT devices do not require this functionality.

NOTE 2:
In clause 5.3, low-end IoT category does not recommend full XML processing. A binary/json format may be defined for any XML data.

NOTE 3:
A solution for High-end IoT device could support either XML schema or binary format.

6.2.1
Common FDT-Instance and File attributes for MBMS IoT profiles

Annex L4.2 in 3GPP TS 26.346 specifies the FDT attributes defined for both the FDT-Instance and File levels. Table 6.2.1-1 shows the profiling for each IoT category.

Table 6.2.1-1: Common FDT-Instance and File attributes for MBMS IoT profiles

	Attributes/Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Content-Encoding
	No
	No
	No

	FEC-OTI-FEC-Instance-ID
	No
	No
	No

	NOTE:
The indicators YES and NO are specified for FLUTE sender.

6.2.2
FDT-Instance specific Elements and Attributes for MBMS IoT profiles

Table 6.2.2-1 shows the profiling for each IoT category on FDT-Instance specific elements and attributes.

Table 6.2.2-1: FDT-Instance Specific Elements and Attributes for MBMS IoT profiles

	Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Expires
	Yes
	Yes
	Yes

	Complete
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2012:Base-URL-1
	Yes (Note 1)
	Yes (Note 1)
	No

	mbms2012:Base-URL-2
	Yes (Note 1)
	Yes (Note 1)
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1:
The "Base-URL-1" or "Base-URL-2" elements are used for byte-range-based file repair.

NOTE 2:
 The indicators YES and NO are specified for FLUTE sender.

6.2.3
FDT File specific Elements and Attributes for MBMS IoT profiles

Table 6.2.3-1 shows the profiling for each IoT category on FDT File specific elements and attributes.

Table 6.2.3-1: FDT File specific Elements and Attributes for MBMS IoT profiles

	Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-Location
	Yes
	Yes
	Yes

	TOI
	Yes
	Yes
	Yes

	Content-Length
	Yes
	Yes
	Yes

	Content-MD5
	Yes
	Yes
	Yes

	mbms2007:Cache-Control
	No (Note 2)
	Yes
	Yes

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Max-Number-of-Encoding-Symbols
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Transfer-Length
	No (Note 1)
	Yes (Note 1)
	No (Note 1)

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	Yes
	Yes
	No

	mbms2012:Alternate-Content-Location-2
	Yes
	Yes
	No

	MBMS-Session-Identity
	No
	No
	No

	NOTE 1:
 IoT devices may not use gzip content encoding, Transfer-Length may not be useful.

NOTE 2:
MBMS application manages the cache control policy.
NOTE 3:
The indicators YES and NO are specified for FLUTE sender.

Signalling of parameters with basic ALC/FLUTE headers or FLUTE extension headers for IoT device categories is the same as specified in clauses 7.2.7 and 7.2.8 of 3GPP TS 26.346.

6.2.4
3GPP-defined FDT extensions for MBMS IoT profiles

3GPP TS 26.346 defines various FDT elements and attributes specified for 3GPP MBMS User Services that are not in the FLUTE specified in RFC 3926 [3]. Table 6.2.4-1 shows the profiling of these elements and attributes for MBMS IoT profiles.

Table 6.2.4-1: 3GPP-defined FDT extension elements for MBMS IoT profiles
	Parameters
	Recommended for Low-end IoT category profiles
	Recommended for High-end IoT category profiles
	MBMS profile in Annex L 3GPP TS 26.346

	mbms2005:MBMS-Session-Identity-Type
	No
	No
	No

	mbms2005:MBMS-Session-Identity-Expiry-Type
	No
	No
	No

	mbms2005:groupIdType
	No
	No
	No

	mbms2007:Cache-Control
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:Base-URL-1
	No
	No
	No

	mbms2012:Base-URL-2
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	No
	No
	No

	mbms2012:Alternate-Content-Location-2
	No
	No
	No

	mbms2012:File-ETag
	Yes (Note 1)
	Yes
	Yes

	mbms2015:IndependentUnitPositions
	No
	No
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1:
CoAP supports Etag option.

NOTE 2:
The indicators YES and NO are specified for FLUTE sender.

	Fourth Change

7.2
Overview of LwM2M

Lightweight M2M (LwM2M) [9] is a system standard defined by Open Mobile Alliance (OMA). As with other device management standards (e.g. OMA DM), LwM2M solution is called an Enabler. LwM2M Enabler defines the application layer communication protocol between a LwM2M Server and a LwM2M Client. The LwM2M Server resides in a private or public data centre and can be hosted by the M2M Service Provider, Network Service Provider or Application Service Provider while the LwM2M Client resides on the device. The target LwM2M Devices are mainly resource constrained devices. The key features of LwM2M 1.0 Enabler can be summarized as follows:

-
Simple resource model with the core set of objects and resources defined in the present document.

-
Operations for creation, update, deletion, and retrieval of resources.

-
Asynchronous notifications of resource changes.

-
Support for several serialization formats, namely TLV, JSON, Plain Text and binary data formats and the core set of LightweightM2M Objects.

-
UDP and SMS transport support.

-
Communication security based on the DTLS protocol supporting different types of credentials.

-
Queue Mode offers functionality for a LwM2M Client to inform the LwM2M Server that it may be disconnected for an extended period and when it becomes reachable again.

-
Support for use of multiple LwM2M Servers.

-

Provisioning of security credentials and access control lists by a dedicated LwM2M bootstrap-server.

LwM2M employs a client-server architecture plus CoAP with UDP/SMS transport binding as shown in Figure 7.2-1 while the protocol stack is shown in Figure 7.2-2. The LwM2M Enabler has two components, LwM2M Server and LwM2M Client. Four interfaces are designed between these two components as shown below:

-
Bootstrap: is used to provision essential information into the LwM2M Client to enable the LwM2M Client to perform the operation "Register" with one or more LwM2M Servers. Bootstrap interface also allows LwM2M Bootstrap Server to manage the keying, access control and configuration of a device.

-
Client Registration: is used by a LwM2M Client to register its capabilities with one or more LwM2M Servers, maintain each registration and de-register from a LwM2M Server.

-
Device management and service enablement: allows the LwM2M Server to perform device management and M2M service enablement by sending operation to the Client and to get corresponding response from the LwM2M Client.

-
Information Reporting: is used by a LwM2M Server to observe any changes in a Resource on a registered LwM2M Client, receiving notifications when new values are available.

[image: image1.emf]
Figure 7.2-1: The overall architecture of the LwM2M Enabler

[image: image2.emf]
Figure 7.2-2: The protocol stack of the LwM2M Enabler

The LwM2M Enabler defines a simple resource model where each piece of information made available by the LwM2M Client is a Resource. The Resources are further logically organized into Objects, and each Resource is given a unique identifier within that Object.

Figure 7.2-3 illustrates the relationship between Resources, Objects and the LwM2M Client. The LwM2M Client can have any number of Resources, each of which belongs to an Object. For example, the Firmware Object contains all the Resources used for firmware update purposes.

[image: image3.emf]
Figure 7.2-3: Relationship between LwM2M Client, Object, and Resources

OMA LwM2M Enabler version 1.0 also specifies a set of 8 Device Management‐oriented Objects:

0: Security Object ‐ handles security aspects between LwM2M Client and Server

1: Server ‐ defines data and functions related to the LwM2M Server

2: Access Control ‐ defines the access rights which can be granted on Client Objects for a given Server

3: Device ‐ details device specific information

4: Firmware ‐ details resources on the device useful for firmware upgrades

5: Location ‐ groups resources providing information about the device current location

6: Connectivity Monitoring ‐ groups resources that assist in monitoring the status of a network connection

-
7: Connection Statistics ‐ groups resources that hold statistical information about an existing network connection

	Fifth Change

7.4
Binary data formats

MBMS protocols, codecs and procedures often use XML as a format for exchanging metadata (e.g. FDT, service announcement). However, the use of XML stack can be costly for IoT devices, especially for low-end IoT profile. Binary data formats may be more appropriate for IoT devices to exchange metadata. One can define a paritular binary format for each specific purpose (e.g. FDT, service announcement, reception report). However, it is desirable to have a common binary format for all procedures, formats in the context of MBMS IoT.
7.4.1
Efficient Extensible Interchange or Efficient XML Exchange (EXI)
EXI is a way for one system to send to another system a highly compressed sequence of parse events. The recipient can build data structures directly from the parse events without having to reconstitute a textual representation (such as a JSON file, an XML file, JavaScript, HTML and so forth) [14]. It was developed by W3C’s Efficient Extensible Interchange Working Group. EXI provides multiple benefits as follows (non exhaustive list):

· EXI provides better compression than other XML compression techniques, and can deliver compression ratios of up to 100 to 1 (Figure 7.4.5.2-1) [15];
· Using EXI format reduces the verbosity of XML documents as well as the cost of parsing;

· When using EXI, XML parsers consume EXI directly. XML applications, such as XML Schema validators and XSLT processors, will process the EXI exactly as they've always processed XML, i.e., no changes to the XML applications are required and XML applications are completely unaware that the format of the data is binary, not text (Figure 7.4.1-2);

· EXI format specification does not make particular assumption about the platform architecture;

· EXI was designed to integrate well into the XML stack, neither duplicating nor requiring changes to functionality at other layers in the XML stack.
Figure 7.4.1-1 shows the diagram which uses EXI to exchange data between sender and receiver.

[image: image4.png]Sender:

Receiver:

EXI
tool

-

/ transmit

EXI
tool

- Lo

XML Schema Validator

!

Figure 7.4.1-1: Data exchange using EXI [15]

Figure 7.4.1-2 shows the interaction between EXI, XML parser and XML application. The parser converts the EXI to an XML infoset and XML applications operate on the infoset. Thus, the applications are unaware that EXI is being used.

[image: image5.png]XML Parser -

XML application
(XSD validator,
XSLT processor)

XML Infoset

EXI-to-Infoset

Figure 7.4.1-2: Interaction between EXI, XML parser and XML application [15]

EXI defines two types of encoding: schema-less and schema-informed. The schema-less encoding is generated directly from the XML data and can be decoded by any EXI entity without any prior knowledge about the data. The schema-informed encoding assumes that the two EXI processors share an XML Schema before actual encoding and decoding can take place. In schema-informed, the available schema information is used to improve compactness and performance.

7.4.2
Well-known binary formats
A number of well-known binary formats for representing data are available such as ASN.1 [16], Thrift [17], Protobuf [18].

The Abstract Syntaxt Notation One (ASN.1) is a well-know binary format used in many applications, especially in telecommunications (3G, LTE). The notation describes data structures for representing, encoding, transmitting, and decoding data. Data structures transfer syntax can be encoded using different encoding rules, providing schema notation even for representing XML in binary form - XER (XML Encoding Rules). The standard ASN.1 encoding rules include:

· Distinguished Encoding Rules (DER)

· Basic Encoding Rules (BER)

· Canonical Encoding Rules (CER)

· XML Encoding Rules (XER)

· Canonical XML Encoding Rules (CXER)

· Extended XML Encoding Rules (E-XER)

· Packed Encoding Rules (PER, unaligned: UPER, canonical: CPER)

· Octet Encoding Rules (OER, canonical: COER)

· JSON Encoding Rules (JER)

· Generic String Encoding Rules (GSER)

Unaligned PER is commonly used in 3GPP cellular technologies such as UMTS (3G) or LTE (4G) for protocols like RANAP, NBAP or RRC [19]. It is noted that the bit ordering is defined and automatically handled by the ASN.1 PER compiler generated code.
Thrift is an interface definition language and binary communication protocol that is used to define and create services for numerous languages. Thrift is used as a remote procedure call (RPC) framework and was developed at Facebook. Although developed at Facebook, it is now an open source project in the Apache Software Foundation.

The Protocol Buffers (Protobuf) is a method of serializing structured data. It is useful in developing programs to communicate with each other over a wire or for storing data. Protobuf were initially developed at Google to address the problem of large number of requests and responses to/from the index server. This protocol uses binary encoding which makes serialized data more compact. The design goals for Protobuf emphasized simplicity and performance. In particular, it was designed to be smaller and faster than XML.

Table 7.4.2-1 shows the comparison between these binary formats [20].

	
	Binary formats

	
	ASN.1
	Thrift
	Protobuf

	Licence
	Open source
	Open source
	Open source

	Language compatibility
	Java, C++, C, Python...
	C++, Java, Python, PHP
	Java, C++, Python

	Parsing speed
	Fast
	Medium
	Fast

	Memory usage
	Low
	Medium
	Medium

	Debugging complexity
	High
	Low
	Medium

	Implementation
	Medium
	Medium
	Low

	Documentation
	Very good
	Less than good
	Very good

Table 7.4.2-1: Comparison of binary formats

NOTE: The implementation indicates the implementation complexity. ASN.1 demands external (third-party) tool for reading encoded message, and it is more complex to deploy [20]. Protobuf has some built-in features, i.e. toString() method that returns human-readable representation of message.

7.4.3
Ad-hoc binary format
Besides the well-known binary formats presented in section 7.4.2 (ASN.1, Thrift, Protobuf), one can define a customized binary format for a given data structure requirement.

For instance, Figure 7.4.3-1 shows an example of an Ad-hoc binary format for FDT.
	Bits
	Number of Octets

	7
	6
	5
	4
	3
	2
	1
	0
	

	HET = 194
	1
	Header part

	FLUTE Version = 1
	FDT Instance ID
	1
	

	FDT Instance ID continue
	2
	

	Binary FDT Version = 1
	Expires
	Base-URL-1
	Base-URL-2
	FEC Information bit (NOTE 6)
	1 (NOTE 5)
	Binary FDT descriptor

	Length of FDT descriptor (NOTE 7)
	2
	

	Content-type (NOTE 1)
	1
	

	Length of Expires
	2
	

	Expires
	0-m
	

	Length of Base-URL-1
	2
	

	Base-URL-1
	0-m
	

	Length of Base-URL-2
	2
	

	Base-URL-2
	0-m
	

	FEC-OTI-FEC-Encoding-ID
	1
	

	FEC-OTI-Maximum-Source-Block-Length
	2 or 4

(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length
	2
	

	Length of FEC-OTI-Scheme-Specific-Info
	2
	

	FEC-OTI-Scheme-Specific-Info
	0-m
	

	Number of files (NOTE 3)
	1
	

	Reserved bits for extension of FDT descriptor (NOTE 7)
	0-m
	

	Length of the Nth file (NOTE 4)
	2
	Binary FDT content

	Content Length
	Content Type
	Content MD5
	FEC-OTI-FEC-Encoding-ID
	FEC Information bit (NOTE 6)
	mbms2012:Alternate-Content-Location-1
	mbms2012:Alternate-Content-Location-2
	mbms2012:File-ETag
	1 (NOTE 5)
	

	Transport Object Identifier (TOI) of the Nth file
	2
	

	Length of Content-location of the Nth file
	2
	

	 Content-location of the Nth file
	0-m
	

	Length of Content-Length of the Nth file
	2
	

	Content-Length of the Nth file
	0-m
	

	Content-Type of the Nth file
	1
	

	Length of Content-MD5 of the Nth file
	2
	

	Content-MD5 of the Nth file
	0-m
	

	FEC-OTI-FEC-Encoding-ID of the Nth file
	1
	

	FEC-OTI-Maximum-Source-Block-Length of the Nth file
	2 or 4

(NOTE 2)
	

	FEC-OTI-Encoding-Symbol-Length of the Nth file
	2
	

	FEC-OTI-Max-Number-of-Encoding-Symbols of the Nth file
	2
	

	Length of FEC-OTI-Scheme-Specific-Info of the Nth file
	2
	

	FEC-OTI-Scheme-Specific-Info of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-1 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-1 of the Nth file
	0-m
	

	Length of mbms2012:Alternate-Content-Location-2 of the Nth file
	2
	

	mbms2012:Alternate-Content-Location-2 of the Nth file
	0-m
	

	Length of mbms2012:File-ETag of the Nth file
	2
	

	mbms2012:File-ETag
	0-m
	

	Reserved bits for extension of the Nth file (NOTE 4)
	0-m
	

Figure 7.4.3-1: Example of AD-hoc binary FDT Instance format

NOTE 1: Content-type of 8 bits could be sufficient for IoT applications.

NOTE 2: 2 octets for FEC Encoding IDs 0, 128, and 130; 4 octets for FEC Encoding ID 129.

NOTE 3: A maximum of 255 files delivered in a single FLUTE session could be sufficient since multiple FLUTE sessions are possible.

NOTE 4: If the length value of the Nth file in the binary FDT is higher than the actual length, the reserved bit for extension are present. The content and values of the extension fields are FFS.

NOTE 5: A list of flags indicates whether the element appears in the FDT or Nth file. The value '0' indicates that the flag is not appeared, the corresponding length and content fields of this flag are not appeared in the binary FDT. The value '1' indicates that the flag is present. The order of the flag content follows the order in the list of flags. For the elements which have a specific length such as FEC related information, there is no length field.

NOTE 6: The FEC Information bit is set to '0' if compact no-code FEC is used. Otherwise, this flag is set to '1', the corresponding fields (FEC-OTI-Maximum-Source-Block-Length, FEC-OTI-Encoding-Symbol-Length, Length of FEC-OTI-Scheme-Specific-Info, FEC-OTI-Scheme-Specific-Info) related to FEC are present.

NOTE 7: If the value of the length of FDT descriptor is higher than the actual length, the reserved bits for extension are present. The content and values of extension fields are FFS.

7.4.4
Key-Length-Value (KLV) format
Section 7.4.3 presents the ad-hoc binary format where each data representation requires a customized binary format. Another possible solution is to use a special Key-Length-Value for all formats and procedures for MBMS IoT. In this KLV format, each data type is associated to a key value while the Length field indicates the actual length of the Value field. For instance, one can define up to 255 keys for MBMS IoT as shown in Table 7.4.4-1.

	Key
	Data type
	Length
	Value

	1
	Content-Location
	2
	

	2
	Content-Type
	1
	

	3
	mbms2012:File-ETag
	2
	

	…
	
	
	

	255
	
	
	

Table 7.4.4-1: Example table for KLV format

This KLV solution can be considered as a subset of ASN.1 solution using BER, PER or OER encoding rules.
7.4.5
Performance comparison of binary data formats
7.4.5.1
General considerations

There are important aspects to consider when comparing different data representation schemes [24]. Some of the most relevant are,

· how are optional fields within messages handled, i.e., how is a field’s presence or absence represented,

· possibility of future backward compatibility when extending a message, i.e., adding of new mandatory or optional data fields,

· byte alignment,

· providing the functionality of data compression, for example variable length representation of integers.

Table 7.4.5.1-1 show the properties of different schemes from the general considerations [24]. The properties of ASN.1 UPER, Protobuf and EXI are extracted from [24].

	
	ASN.1 UPER (NOTE 7)
	Protobuf (NOTE 7)
	EXI (NOTE 7)
	KLV
	Ad-hoc binary format

	Presence of optional fields
	Encoded
	Encoded
	Encoded
	Not encoded
	Encoded (NOTE 4)

	Extendability
	No (NOTE 1)
	Yes
	Yes
	Yes (NOTE 3)
	Yes (NOTE 5)

	Byte alignment (NOTE 6)
	No (NOTE 2)
	Yes
	No
	Yes
	No

	Compression
	Yes
	Yes (byte blocks)
	Yes (byte blocks)
	Yes
	Yes

Table 7.4.5.1-1: Overview of basic properties for different binary schemes

NOTE 1: Other ASN.1 encoding rules (e.g. BER) satisfy this property.

NOTE 2: The aligned PER encoding rule satisfies this property.

NOTE 3: The extendability of KLV format is limited to the pre-defined maxinum number of keys (e.g. 255 keys if 8 bits are used).

NOTE 4: Optional fields are presented by a list of flags.

NOTE 5: If reserved bits for extension are used.

NOTE 6: Byte alignment indicates that the fields are aligned to 8-bit octet boundaries by inserting padding bits.

NOTE 7: The assessment of ASN.1 UPER, Protobuf and EXI reflects the view of the authors in [24].

7.4.5.2
Performance comparison

Figure 7.4.5.2-1 shows better compactness of EXI compared to both XML and ASN.1 PER [22]. However, the comparison between EXI and ASN.1 PER in terms of processing efficiency is not shown in the evaluation performed by W3C.

[image: image6.png]EXI Compactness Compared to ASN.1 PER

140.00%

. ASN.1 makes some
Peaks indicate cases e e
where ASN.1 did not work

120.00%

100.00% e

80.00%

% XML size

60.00%

— XML
——ASN.1 PER
——Eficient XML|

40.00%

2000%

19x smaller
than ASN.1]

0.00%

Test cases (sorted by best result)

Figure 7.4.5.2-1: EXI compactness compared to ASN.1 PER

NOTE: Whenever a schema is available, EXI uses the schema-informed for the test cases [22].

Table 7.4.5.2-1 also confirms the better compactness of EXI compared to ASN.1 PER [23]. In this evaluation, EXI uses schema-informed and no-compression.

	
	JTLM Data (360 bytes)
	Location Data (103 bytes)

	Format
	Size (bytes)
	Ratio
	Size (bytes)
	Ratio

	XML
	360
	100%
	103
	100%

	ASN.1 PER
	105
	29%
	27
	26%

	EXI
	39
	11%
	17
	17%

Table 7.4.5.2-1: Comparison in terms of compactness between XML, ASN.1 PER and EXI

NOTE: The compactness performance of EXI may be different when schema-less is used.

Table 7.4.5.2-2 shows the processing efficiency for both encoding and decoding [23]. ASN.1 PER shows better processing efficiency with Location Data (103 bytes).

	
	Encode
	Decode

	Format
	TPS
	Ratio
	TPS
	Ratio

	XML
	15858
	1
	9216
	1

	EXI
	185029
	x11.7
	277409
	x30.0

	ASN.1 PER
	310862
	x19.6
	318419
	x34.6

Table 7.4.5.2-2: Comparison in terms of processing efficiency between XML, ASN.1 PER and EXI

NOTE: TPS stands for transactions per second.

The evaluation between Protobuf, EXI and ASN.1 UPER is performed in the context of wireless Car-to-X communication [24]. The performance metrics considered in this evaluation are:

· Computation time

· Memory footprint on computation

· Encoded data length.

Tables 7.4.5.2-3 and 7.4.5.2-4 show the encoding and decoding performance results for CAM (Cooperative Awareness Message) and DENM (Decentralized Environmental Notification Message) messages with Protobuf, ASN.1 UPER and EXI.

	
	CAM
	DENM

	Encoding type
	Protobuf
	ASN.1 UPER
	EXI
	Protobuf
	ASN.1 UPER
	EXI

	Heap / Stack
	242 / 1864
	66 / 3112
	62656 / 210
	126 / 1752
	75 / 2792
	61608 / 175

	Encoded length
	165
	41
	64 (opt: 61)
	114
	43
	52 (opt: 51)

Table 7.4.5.2-3: Encoding performance results for CAMs and DENMs [24]

	
	Protobuf
	ASN.1 UPER
	EXI

	CAM: heap / stack
	242 / 1800
	370 / 2968
	3850 / 210

	DENM: heap / stack
	126 / 1624
	816 / 2872
	3630 / 135

Table 7.4.5.2-4: Memory related decoding performance results for CAMs and DENMs [24]

NOTE: Size of encoded messages is one of the key parameters in the evaluation in [24], data optimized schemes are used for EXI.

The following conclusions are drawn from the evaluation in [24]:

· ASN.1 UPER outperforms Protobuf and EXI in terms of required encoding delay and runtime (Figure 7.4.5.2-2).

· EXI showed to be the most expensive in terms of memory footprint (Tables 7.4.5.2-3 and 7.4.5.2-4).

· ASN.1 UPER encoding performs better compared to EXI and Protobuf in terms of encoding length for CAM and DENM messages (Tables 7.4.5.2-3 and 7.4.5.2-4).

· In terms of runtime, binary encoding performs significantly better than ASN.1 UPER in all studied cases (Figure 7.4.5.2-2).

[image: image7.png]100000

CAM m—
DENM mosssss
Sec.1w /o mu—
Sec.lw m———
[
R

10000 +

1000

100000

10000

1000

T
N N "

Figure 7.4.5.2-2: Encoding (left) and decoding (right) runtime performance of ETSI ITS CAM, DENM and security envelope encoding on an Intel Core i7 processor [24]

NOTE 1: Sec. 1w/o indicates security profile 1 for CAM message without certificate. Sec. 1w indicates security profile 1 for CAM message with certificate. Sec. 2 indicates security profile 2 for DENM message. Sec. 3 indicate security profile 3 for generic message.

NOTE 2: The binary format is specialized for CAM and DENM messages.

7.4.5.3
Summary

The following conclusions are drawn from the performance comparison in section 7.4.5.2:

· Binary data formats (e.g. EXI, ASN.1, Protobuf) significantly outperform the XML data representation in terms of both compactness, encoding/decoding processing efficiency and memory usage.

· ASN.1 UPER is better than EXI in terms of processing efficiency and memory footprint [24].

· ASN.1 PER is better than EXI in terms of processing efficiency [23].

· EXI is better than ASN.1 (UPER or PER) in terms of compactness in the evaluation performed by W3C. In the evaluation performed by [24], ASN.1 UPER performs better than EXI for CAM and DENM messages in terms of encoded data length.

· Binary encoding specialized for CAM and DENM messages significantly better than ASN.1 UPER and EXI in terms of run time.

7.4.5.3
Recommendation
According to previous results, it is recommended to use ASN.1 PER as basis binary format for IoT.
	End of document

Page: 1/5

Page: 5/5

