
3GPP TSG SA4 MBS SWG AH#99 Telco
 S4-AHI781
16th March 2018
Source:
Expway
Title:
PseudoCR Editorial changes in TR 26.850
Spec:
3GPP TR 26.850
Agenda item:
4
Document for:
Approval
Contact:
Tuan Tran tuan.tran@expway.com
1. Introduction
In SA4#93, SA4 has initiated the FS_MBMS_IoT study item about the MBMS service layer profiles and optimizations to provide application services such as massive software updates for IoT devices which are significantly resource-constrainted (battery power, processing and storage).

2. Reason for Change
The present document provides the editorial changes compared to the lastest version of TR 26.850 v1.1.0 (2018-02).
3. Conclusions

<Conclusion part (optional)>

4. Proposal

It is proposed to agree the following changes to 3GPP TR 26.850.
* * * First Change * * * *

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].

ADPD
Associated Delivery Procedure Description
CoAP
Constrained Application Protocol
DASH
Dynamic Adaptive Streaming over HTTP
eMBMS
Evolved Multimedia Broadcast Multicast Services

eMTC
enhanced Machine Type Communication
FLUTE
File deLivery over Unidirectional Transport

IoT
Internet of Things

MPD
Media Presentation Description

NB-IoT
NarrowBand IoT
RTOS
Real-Time Operating System

RTP
Real-Time Transport Protocol
USBD
User Service Bundle Description
USD
User Service Description
UTC
Universal Time Coordinated
XML
Extensible Markup Language

* * * Next Change * * * *

4
Use cases
4.0
General
3GPP TR 22.861 [6] identifies the use case families, traffic scenarios and potential requirements for massive IoT. However, the use case families in 3GPP TR 22.861 do not address the data delivery from the network to a large amount of UEs. The following use cases present the data delivery using MBMS User Services with additional requirements compared to 3GPP TR 22.861.

4.1
Use case 1 - Periodic and/or planned data delivery

4.1.1
Description
This use case represents a periodic and/or planned file delivery to a large number of devices. Smart water-metering devices are installed in deep indoor and wake up once or twice a day to send the consumption reports to the water-metering network that is regularly extended. The payload size for uplink transmission is in the range of 12 to 100 bytes. Based on growing amount of data, the system configuration is adjusted, requiring the delivery of small configuration updates to all metering devices. Moreover, the water-metering manufacturer regularly provides non-critical software updates for bug fixes, performance improvements, or new features/functionalities. For example, the clause E.2.4 of 3GPP TR 45.820 [11] estimates a periodic inter-arrival time of 180 days between software update events. This frequency is equivalent to twice per year. Depending on the application, the update frequency can be lower or higher. These devices require a battery lifetime of approximate 15 years and are significantly resource-constrained (processing and storage).

4.1.2
Recommended Requirements

The following recommended requirements are considered:

-
The 3GPP system supports the reliable delivery and associated procedures to ensure data integrity.

-
The 3GPP system supports the report on successful delivery.

-
The 3GPP system supports eMBMS delivery mechanisms and procedures for devices with very limited capabilities (e.g. limited battery life of 15 years, limited processing and limited storage).

-
The 3GPP system supports a mechanism to inform the scheduled delivery session to the devices that enables the UE to download the file at the planned schedule time.
-
The 3GPP system supports a mechanism to acknowledge a successful reception and action required (e.g. successful file update).

In addition, the following recommended requirements are not directly related to 3GPP system but necessary for IoT software update:

-
The update needs to be robust. An update does not make the device unusable.

-
The update needs to be atomic. An update needs to be completely installed or not at all.

-
The update needs to be fail-safe. There is a fall-back mode if the update has failed.

4.2
Use case 2 – Initially Unplanned data delivery

4.2.1
Description

This use case represents the unplanned data delivery to a large number of devices. A device manufacturer wants to distribute a software/firmware update after some bug fixes. These devices may wake up periodically (e.g., every 12 hours to upload measurement data), or dynamically, for instance, when the buffer which contains measurement data is about to be full. The information that a new software/firmware update is available is transmitted during these wake-up periods. The device recommended requirements and constraints are similar to the use case 1.

4.2.2
Recommended requirements

In addition to the recommended requirements in clause 4.1.2, the following additional recommended requirement is considered:

-
The 3GPP system supports a mechanism to inform the UE during its wake-up periods about any newly scheduled download delivery sessions.

4.3
Use case 3 – Initially Unplanned data delivery for critical data

4.3.1
Description

This use case represents the unplanned critical data delivery to a large number of devices. A bug in software could be a target for exploitation or is being exploited by unwanted people to perform a massive attack if the devices are connected to the Internet. To solve the issue, a device manufacturer wants to distribute as soon as possible a critical software/firmware update. The device recommended requirements and constraints are similar to the use case 1. But in contrast to use case 2, the device manufacturer wants to speed up the update mechanism such that devices can obtain information on a newly scheduled download delivery session, as opposed to having to wait until the next wake-up period to obtain such information.

4.3.2
Recommended requirements

In addition to the recommended requirements in clause 4.1.2, the following additional recommended requirement is considered:

-
The 3GPP system supports a mechanism to page the UE in order to inform the UE about a newly schedule download delivery session.

* * * Next Change * * * *

6
MBMS for NB-IoT device categories

6.1
MBMS User Service Announcement Profile

3GPP TS 26.346 [2] defines different procedures, mechanisms and protocols for MBMS User Services. The table 6.1-1 shows the profiling for each IoT category:

Table 6.1-1: List of supported procedures and methods for low-end and high-end IoT categories

	
	
	Recommended for Low-end IoT category Profile
	Recommended for High-end IoT category Profile

	Service Announcement
	MBMS bearer
	Yes (Note 1)
	Yes

	
	Interactive Announcement Function
	Yes (Note 2)
	Yes

	
	Point-to-Point push bearer
	
Yes (Note 4)
	Yes (Note 4)

	Associated delivery procedure
	File Repair – Byte Range
	Yes (Note 3)
	Yes

	
	File Repair – Symbol based
	Yes (Note 3)
	Yes

	
	Reception Report
	Yes (Note 3)
	Yes

	
	Consumption Report
	No
	No

	Delivery method
	Download
	Yes
	Yes

	
	Streaming
	No
	No

	
	Group communication
	No
	No

	
	Transparent
	No
	No

	NOTE 1:
In clause 5.2.3.1 of 3GPP TS 26.346, the possibility to download session parameters from an HTTP server resolved from the Service Announcement may not be applicable for low-end IoT category. A CoAP based solution instead of HTTP may be more efficient.

NOTE 2:
 In clause 5.2.4 of 3GPP TS 26.346, the HTTP URL used by the UE to obtain USD via unicast may not be applicable to low-end IoT category. A CoAP based solution for Interactive Announcement Function instead of HTTP may be more appropriate.

NOTE 3:
File repair and reception report messages using HTTP protocol in a single TCP connection (3GPP TS 26.346 clauses 9.3 and 9.4) is not applicable to low-end IoT category. Simplified file repair and reception report procedures is required (e.g. file repair and reception report based on CoAP).

NOTE 4:
Section 7.5 provides an example use of CoAP PUT method to inform about a new schedule.

6.2
MBMS IoT profiles for file download delivery method

6.2.1
Introduction

Clause L.4 in 3GPP TS 26.346 specifies the MBMS download profile for both non-real-time (NRT) file delivery services as well as DASH-formatted streaming services, using the FLUTE protocol. FLUTE uses FDT instance to indicate the attributes and elements required for the delivery. The FDT attributes and elements are categorized at the FDT-Instance level (i.e., the FDT-Instance element of the FDT) and at the File level (i.e., the File element of the FDT). The high-end IoT category may reuse the MBMS download profile but does not require the functionalities for multimedia services (e.g. DASH). Table 6.1-1 shows the supported high-level capabilities in download delivery method for IoT devices.

Table 6.2-1: Supported capabilities in download delivery method

	
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	FLUTE session setup and control with RTSP
	No (Note 1)
	No (Note 1)
	Optional

	SDP for Download Delivery Method
	Yes
	Yes
	Yes

	XML schema and processing
	No (Note 2)
	Still under consideration (Note 3)
	Yes

	NOTE 1:
3GPP TS 26.346 clause L.4.6 specifies "FLUTE session setup and control with RTSP" as an option supported by the UE, IoT devices do not require this functionality.

NOTE 2:
In clause 5.3, low-end IoT category does not recommend full XML processing. A binary/json format may be defined for any XML data.

NOTE 3:
Still under consideration. Do we need to merge the 2 profiles and have a unique profile or have an High-end Iot Profile compatible with the Annex L?

6.2.1
Common FDT-Instance and File attributes for MBMS IoT profiles

Annex L4.2 in 3GPP TS 26.346 specifies the FDT attributes defined for both the FDT-Instance and File levels. Table 6.2.1-1 shows the profiling for each IoT category.

Table 6.2.1-1: Common FDT-Instance and File attributes for MBMS IoT profiles

	Attributes/Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Content-Encoding
	No
	No
	No

	FEC-OTI-FEC-Instance-ID
	No
	No
	No

	NOTE:
The indicators YES and NO are specified for FLUTE sender.

6.2.2
FDT-Instance specific Elements and Attributes for MBMS IoT profiles

Table 6.2.2-1 shows the profiling for each IoT category on FDT-Instance specific elements and attributes.

Table 6.2.2-1: FDT-Instance Specific Elements and Attributes for MBMS IoT profiles

	Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Expires
	Yes
	Yes
	Yes

	Complete
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2012:Base-URL-1
	Yes (Note 1)
	Yes (Note 1)
	No

	mbms2012:Base-URL-2
	Yes (Note 1)
	Yes (Note 1)
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1:
The "Base-URL-1" or "Base-URL-2" elements are used for byte-range-based file repair.

NOTE 2:
 The indicators YES and NO are specified for FLUTE sender.

6.2.3
FDT File specific Elements and Attributes for MBMS IoT profiles

Table 6.2.3-1 shows the profiling for each IoT category on FDT File specific elements and attributes.

Table 6.2.3-1: FDT File specific Elements and Attributes for MBMS IoT profiles

	Parameters
	Recommended for Low-end IoT category profile
	Recommended for High-end IoT category profile
	MBMS profile in Annex L 3GPP TS 26.346

	Content-Location
	Yes
	Yes
	Yes

	TOI
	Yes
	Yes
	Yes

	Content-Length
	Yes
	Yes
	Yes

	Content-MD5
	Yes
	Yes
	Yes

	mbms2007:Cache-Control
	No (Note 2)
	Yes
	Yes

	Content-type
	Yes
	Yes
	Yes

	FEC-OTI-FEC-Encoding-ID
	Yes
	Yes
	Yes

	FEC-OTI-Maximum-Source-Block-Length
	Yes
	Yes
	Yes

	FEC-OTI-Encoding-Symbol-Length
	Yes
	Yes
	Yes

	FEC-OTI-Max-Number-of-Encoding-Symbols
	Yes
	Yes
	Yes

	FEC-OTI-Scheme-Specific-Info
	Yes
	Yes
	Yes

	Transfer-Length
	No (Note 1)
	Yes (Note 1)
	No (Note 1)

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	Yes
	Yes
	No

	mbms2012:Alternate-Content-Location-2
	Yes
	Yes
	No

	MBMS-Session-Identity
	No
	No
	No

	NOTE 1:
 IoT devices may not use gzip content encoding, Transfer-Length may not be useful.

NOTE 2:
Low-end IoT device category does not need Cache-Control.
NOTE 3:
The indicators YES and NO are specified for FLUTE sender.

Signalling of parameters with basic ALC/FLUTE headers or FLUTE extension headers for IoT device categories is the same as specified in clauses 7.2.7 and 7.2.8 of 3GPP TS 26.346.

6.2.4
3GPP-defined FDT extensions for MBMS IoT profiles

3GPP TS 26.346 defines various FDT elements and attributes specified for 3GPP MBMS User Services that are not in the FLUTE specified in RFC 3926 [3]. Table 6.2.4-1 shows the profiling of these elements and attributes for MBMS IoT profiles.
Table 6.2.4-1: 3GPP-defined FDT extension elements for MBMS IoT profiles
	Parameters
	Recommended for Low-end IoT category profiles
	Recommended for High-end IoT category profiles
	MBMS profile in Annex L 3GPP TS 26.346

	mbms2005:MBMS-Session-Identity-Type
	No
	No
	No

	mbms2005:MBMS-Session-Identity-Expiry-Type
	No
	No
	No

	mbms2005:groupIdType
	No
	No
	No

	mbms2007:Cache-Control
	No
	No
	No

	mbms2008:FullFDT
	No
	No
	No

	mbms2009:Decryption-KEY-URI
	No
	No
	No

	mbms2012:Base-URL-1
	No
	No
	No

	mbms2012:Base-URL-2
	No
	No
	No

	mbms2012:FEC-Redundancy-Level
	No
	No
	No

	mbms2012:Alternate-Content-Location-1
	No
	No
	No

	mbms2012:Alternate-Content-Location-2
	No
	No
	No

	mbms2012:File-ETag
	Yes (Note 1)
	Yes
	Yes

	mbms2015:IndependentUnitPositions
	No
	No
	No

	MBMS-Session-Identity-Expiry
	No
	No
	No

	NOTE 1:
CoAP supports Etag option.

NOTE 2:
The indicators YES and NO are specified for FLUTE sender.

* * * Next Change * * * *

7.3.0
General
3GPP TS 26.346 clause 9.3 describes two file repair procedures for MBMS User Services: the symbol-based procedure and the byte-range-based procedure. In byte-range-based message format, the MBMS UE uses the conventional HTTP/1.1 GET or partial GET requests as defined in RFC 2616 to request all or a subset of source symbols of the referenced resource, respectively. Low-end IoT device category may not equipped with HTTP stack to keep a small code size. This clause describes the solutions for File Repair based on CoAP. It comprises two categories of file repair mechanisms which are similar in the use of a generic CoAP server that is AL-FEC unaware, as the file repair server. They differ in the way the MBMS receiver/CoAP client performs the CoAP requests for repair data:

1) Byte-range based file repair, whereby the CoAP client specifies a byte range of the original file stored on the CoAP server to be returned by the server;

2) Block-wise file repair, whereby the CoAP client specifies one or more blocks of data, in the manner of block-wise transfer in CoAP as defined in RFC 7959 [13].

The two categories of CoAP file repair mechanisms are further described in clauses 7.3.1 and 7.3.2.
* * * Next Change * * * *

7.3.1
Byte-Range-based File Repair Request Message Format
The CoAP base protocol [7] does not define the option that has an equivalent functionality as Range in HTTP header. This solution provides two alternative options to address the byte-range-based file repair.
CoAP can be used for File Repair request and response messages instead of using HTTP stack for byte-range-based.

The byte-range-based solutions have two following options:

-
The option 1 provides a solution using the existing Uri-Query option defined in CoAP. It can be done without any changes in the CoAP IETF standard.
-
The option 2 defines a new CoAP option Range. This solution requires a change in the CoAP IETF standard.
7.3.1.1
Option 1: use Uri-Query option in CoAP

This alternative relies on the use of Uri-Query option in CoAP to send a byte-range request message. This solution uses the special defined keywords "bytefrom" and "byteto" inside Uri-Query option to indicate the byte-range.

NOTE 1:
The special defined keywords could be different than "bytefrom" and "byteto" if this option is adopted.

As an example, the FLUTE receiver partially receives the transport object with file name "firmware.bin" having the "File-Etag" attribute set to "df69d20220cb1ff4" in the FDT instance. It issues a repair request to the host server to fetch the missing bytes. The request message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 5683

Uri-Host = "mbmsrepair1.example.com"

Etag = "df69d20220cb1ff4"

Uri-Path = "path"

Uri-Path = "repair_script"

Uri-Query = "bytefrom=500;byteto=627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/?bytefrom=500;byteto=627

NOTE 2:
The Etag option does not appear in the CoAP URI but in the CoAP payload.

Upon reception of the GET request message, the CoAP server parses the special keywords "bytefrom", "byteto" to extract the byte-range the CoAP client wants to fetch. Figure 7.3.1.1-1 shows the request and response CoAP messages.

[image: image1.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.1-1: Request and response CoAP messages using Uri-Query option

NOTE 3:
MID is the message ID in CoAP header.

In 3GPP TS 26.346, multiple byte-ranges or multiple symbols in different block number can be put in a single HTTP based file repair request message. However, there is no benefits to combine multiple requests in a single request message in CoAP since transfer of each block is acknowledged [13]. If the missing data in response message is large or the CoAP server wants to use multiple small data payload in response messages, the block-wise transfer is used. Table 7.3.1.1-1 shows different cases for byte-range request:

Table 7.3.1.1-1: Different cases for CoAP byte-range request message

	Single byte-range
	Single response CoAP message for file repair if possible

Otherwise use block-wise transfer

	Multiple byte-ranges
	Split into multiple of single byte-range requests

Figure 7.3.1.1-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes.

[image: image2.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

B
U Query = bysfrom=500 yteto=a2T

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.1-2: Request response CoAP messages using block-wise

NOTE 4:
 MID is the message ID in CoAP header.
7.3.1.2
Option 2: define a new CoAP option Range

A new CoAP option "Range" with a new allocated number 21 is defined in this solution. Table 7.3.1.2-1 shows an example where the "Range" option resides in the ordered options in CoAP.

Table 7.3.1.2-1: New defined "Range" option within CoAP options
	No.
	C
	U
	N
	R
	Name
	Format
	Length
	Default

	1
	x
	
	
	x
	If-Match
	opaque
	0-8
	(none)

	3
	x
	x
	-
	
	Uri-Host
	string
	1-255
	(see below)

	4
	
	
	
	x
	ETag
	opaque
	1-8
	(none)

	5
	x
	
	
	
	If-None-Match
	empty
	0
	(none)

	7
	x
	x
	-
	
	Uri-Port
	unit
	0-2
	(see below)

	8
	
	
	
	x
	Location-Path
	string
	0-255
	(none)

	11
	x
	x
	-
	x
	Uri-Path
	string
	0-255
	(none)

	12
	
	
	
	
	Content-Format
	unit
	0-2
	(none)

	14
	
	x
	-
	
	Max-Age
	unit
	0-4
	60

	15
	x
	x
	-
	x
	Uri-Query
	string
	0-255
	(none)

	17
	x
	
	
	
	Accept
	unit
	0-2
	(none)

	20
	
	
	
	x
	Location-Query
	string
	0-255
	(none)

	21
	
	x
	
	x
	Range
	string
	0-255
	(none)

	35
	x
	x
	-
	
	Proxy-Uri
	string
	1-1034
	(none)

	39
	x
	x
	-
	
	Proxy-Scheme
	string
	1-255
	(none)

	60
	
	
	x
	
	Size1
	unit
	0-4
	(none)

	C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

NOTE 1:
This solution uses the option number 21 to demonstrate the feasibility of the solution. If this solution using "Range" option is adopted as an extension of CoAP protocol, the allocated number could be different.

With the new defined CoAP option, the query message from the CoAP client is as follows:

Input:

Destination IP Address = 198.51.100.1

Destination UDP Port = 61616

Uri-Host = "mbmsrepair1.example.com"

Etag = "df69d20220cb1ff4"

Uri-Path = "path"

Uri-Path = "repair_script"

Range = "bytes=500-627"

Output:

coap://mbmsrepair1.example.com:5683/path/repair_script/

NOTE 2:
The Etag and Range options do not appear in the CoAP URI but in the CoAP payload since these options are not in the process of the clause 6.5 of RFC 7252.

Figure 7.3.1.2-1 shows the request response CoAP messages using the new defined "Range" option.

[image: image3.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content

>

Payload: Tonentofbyterange 500627

Figure 7.3.1.2-1: Request and response CoAP messages using defined "Range" option

Similarly, Figure 7.3.1.2-2 shows the case where the CoAP server wants to use block-wise transfer to deliver the missing bytes.
[image: image4.png](CoAP Client|
(07 UE)

CON [MID=1234] GET, /pathirepair_script

(CoAP Server|

(Fierepai saver)

Erpr—rea
Range ="byes=00-27"

ACK [MID=1234], 2.05 Content, 2:0/1/64

>

CON [MID=1235] GET, /pathirepair_script, 2:1/0/64

ACK [MID=1235], 2.05 Content, 2:1/0/64

Figure 7.3.1.2-2: Request and response CoAP messages using defined "Range" option and block-wise

* * * Next Change * * * *

7.3.2
Block-wise Transfer for File Repair

Two alternatives for block-wise based file repair via CoAP are described in this contribution. They are motivated by and modeled after similar options in byte-range based file repair, as described in 3GPP TS 26.346, clause 9.3.6.2. Specifically, they are based on the two options available to the BM-SC for delivering FEC encoding symbols using the download delivery method:

· Sending of source symbols followed by repair symbols, and

· Sending of repair symbols exclusively.

For the sake simplicity in the following examples, it is assumed that sub-blocking is not used in the broadcast transmission of FEC symbols. Also, it is assumed that the original file object is stored on a standard CoAP server that supports file repair, and which is FEC-unaware.
7.3.2.1
Option 3: Block-wise file repair after broadcast transmission of source and repair symbols
In the example as shown below in Figure 7.3.2.1-1, broadcast delivery of the file object comprises sending of the source symbols followed by repair symbols. It is assumed that the file object for broadcast delivery to MBMS-capable IoT devices is a firmware update file whose size is 6.7 Kbytes. The BM-SC will apply AL-FEC in the transmission of the file object, encoded as source symbols, along with the repair symbols generated from the file, as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image5.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 13

Legend:

Source symbols

Repair symbols

Padding bytes

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Source

Symbol 0

Source

Symbol 15

reception loss

reception loss

Blk_4

Repair

Symbol 35

Figure 7.3.2.1-1: MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of source + repair symbols

In FLUTE delivery of the file, an integer number of FEC encoding symbols are contained in the 1024-byte packet payload – in this example, four 256-byte FEC symbols are carried in each FLUTE packet. Loss in reception of any FLUTE packet, due to for example transmission errors, would result in a loss of four symbols (for packets not containing padding bytes). The UE will track the number of symbols it has successfully acquired, and determine the specific additional symbols needed for successful FEC decoding. As shown in the above example, FEC symbols which map logically to Blocks 1, 5 and 6 of the source file (along with some repair symbols) were not received, corresponding to the loss of source symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-26. Suppose that in this example, eleven additional symbols are needed to enable full file recovery. The MBMS client will determine that source symbols with ESIs 4-7, 20-23, and 24-26, corresponding to Blocks 1 and 5, and a portion of Block 6, will need to be acquired via unicast file repair. Subsequently, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer from the server of those symbols, as shown in Figure 7.3.2.1-2.

[image: image6.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 1/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 1/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 5/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 5/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 6/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 6/0/6}

Figure 7.3.2.1-2: Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 1, 5 and 6 at repair server

Note that in the example message flow in Fig. 7.3.2.1-2, and according to the semantics in RFC 7959 [13], the third line of the request indicates, by ‘B2’, the use of the ‘Block2’ option in the request, and whereby the notation ‘1/0/6’ correspond to the triplet [NUM/M/SZX]. The NUM field represents the block number of the payload requested for return in the response (‘1’, ‘5’ and ‘6’ in this example), the M bit has no meaning and must be set to zero, and SZX = 6 is a variable for use in computing the actual block size for use in block-wise transfer, as given by 2(SZX + 4), or 1024 bytes. Due to the use of the Confirmable (CON) message in the request with message ID as shown inside the bracket [], reliability is ensured for the associated UDP transport by the returned ACK message, with the same Message ID, in which the requested resource is piggybacked.

7.3.2.2
Option 4: Block-wise file repair after broadcast transmission of only repair symbols
In the example as shown below in Figure 7.3.2.2-1, only repair symbols are sent in the broadcast delivery of the file object. As in the previous case, a 6.7 Kbyte file is broadcast to (IoT) UEs, the BM-SC applies AL-FEC in the transmission of the file object, and the encoded repair symbols are sent as a sequence of ALC/ FLUTE packets, each with payload size of 1024 bytes.

[image: image7.emf]Confidential and Proprietary –Qualcomm Technologies, Inc.

|

MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION

|

80-xxxxx-x Rev. A 14

Legend:

Repair symbols

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Repair

Symbol 0

Repair

Symbol 15

reception loss

reception loss

Blk_4

Blk_8

Figure 7.3.2.2-1: MBMS download delivery of 6.7-kByte file employing 256-byte FEC symbols carried in FLUTE packets with payload size of 1024 bytes; sending of repair symbols only

In this example, it can be seen that FEC symbols which map logically to Blocks 1, 5, 6 and 7 were not received, resulting in the loss of repair symbols with ESIs (Encoded Symbol IDs) 4-7 and 20-31. Similar to the previous example, it is assumed that eleven additional symbols are needed to enable full file recovery, but since only repair symbols were transmitted/received, file recovery can be achieved at the UE by acquiring any eleven source symbols, ensured to be distinct from the already-received repair symbols. In this case, it would the simplest for the MBMS client, acting as the CoAP client, to request the first eleven source symbols, i.e., the initial 2048 bytes of the file stored in the repair server. In other words, the UE will employ CoAP’s Block2 option to request, via the GET method, block-wise transfer by the server of the first three 1024-byte blocks (Blocks 0, 1 and 2), from the repair server, as shown in Figure 7.3.2.2-2.

[image: image8.emf]CoAP Server

(Firmware Update)

CoAP Client

0.01 CON [0xdb09]

(Token 0x102)

{B2, 0/0/6}

2.05 ACK [0xdb09]

(Token 0x102)

{B2, 0/1/6}

0.01 CON [0xdb10]

(Token 0x103)

{B2, 1/0/6}

2.05 ACK [0xdb10]

(Token 0x103)

{B2, 1/1/6}

0.01 CON [0xdb11]

(Token 0x104)

{B2, 2/0/6}

2.05 ACK [0xdb11]

(Token 0x104)

{B2, 2/1/6}

Figure 7.3.2.2-2: Block-wise transfer request and response for retrieval of FEC symbols contained in Blocks 0, 1 and 2 at repair server
7.3.3
Solution evaluation
.
-editors note – evaluation need to be harmonized.
Option3 vs. option 4 for block-wise transfer based file repair, as described in Sections 7.3.2.1 and 7.3.2.2, bear resemblance to the broadcast delivery of source and repair symbols vs. repair symbols only methodologies, respectively, and associated unicast procedures for byte-range based file repair as specified in 3GPP TS 26.346. Broadcast transmission of source and repair symbols is shown below in Fig. 7.3.3-1, and broadcast transmission of only the repair symbols is shown in Fig. 7.3.3-2.

[image: image9]
Figure 7.3.3-1: Broadcast delivery of source and repair symbols

[image: image10.png]Broadcastrepairsymbols only

nternet I:.:.] I

Received broadcast symbols

Red = received broadcast repair symbols
Whi nissed or lost broadcast symbols

Figure 7.3.3-2: Broadcast delivery of repair symbols only

The Block options (‘Block1’ and ‘Block2’ as defined in RFC 7959 [3][13]) enable the repair server to be stateless, i.e. it does not maintain state on what the client has previously retrieved, nor is it aware of the status of the file repair process – e.g., when the client has finished, whether the client has decided to abort the file repair procedure (for example, due to change in the ETag value of the file resource), etc. Complexity of server operation in support of file repair requests from the UE is the same, regardless of whether the client is retrieving contiguous or non-contiguous blocks, or the relative position of the requested repair data within the source file stored at the server (for example, at the beginning or near the end of the file, or somewhere in between). The reason being that the server is handling the request/response for one block at a time, and it maintains no state information on prior transactions.

On the other hand, broadcast transmission of only repair symbols makes the MBMS client’s processing task a little easier, as it need not track which source symbols are missing in generating request for that specific set, which would be required if source symbols were broadcast. However, the client still has to make two separate CoAP requests, as done in Option 3. Another potential advantage of repair-only broadcast as compared to broadcast of source symbols, is the expected better caching efficiency (higher “hit ratio’) should proxy caches be employed in the unicast network, since every client that performs file repair can be designed to request repair data (as contiguous symbols) starting with the very first CoAP Block of the source file.
* * * End of change * * * *

[image: image11.png]

Legend:

Repair symbols

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Repair

Symbol 0

Repair

Symbol 15

reception loss

reception loss

Blk_4

Blk_8

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

_1578275963.vsd
0.01 CON [0xdb10]
(Token 0x103)
{B2, 5/0/6}

2.05 ACK [0xdb10]
(Token 0x103)
{B2, 5/1/6}

_1579432235.vsd
0.01 CON [0xdb10]
(Token 0x103)
{B2, 1/0/6}

2.05 ACK [0xdb10]
(Token 0x103)
{B2, 1/1/6}

Legend:

Source symbols

Repair symbols

Padding bytes

1024 bytes

File.apk ~ 6.7 kBytes

256-byte Symbol

Transmitted

Blk_0

Received

MBMS download delivery

Source

Symbol 0

Source

Symbol 15

reception loss

reception loss

Blk_4

Repair

Symbol 35

	Confidential and Proprietary – Qualcomm Technologies, Inc. | MAY CONTAIN U.S. AND INTERNATIONAL EXPORT CONTROLLED INFORMATION | 80-xxxxx-x Rev. A	 ‹#›

