Page 4
Draft prETS 300 ???: Month YYYY


3GPP TSG-SA4 MBS SWG ad-hoc #73 on FS_SAND
S4-AHI652
Conf Call: October 12, 2016, 16:00-18:00 CEST


Agenda item: 
4
Source: 
Intel

Title: 
Proxy Caching: Addendum on Potential Solutions including Relevant SAND Functionality
Document for
Discussion and Agreement

1 Proposal
This document proposes a few editorial updates and an addendum to address potential solutions including relevant SAND functionality for the proxy caching use case in TR 26.957. It is proposed to agree and adopt the proposed updates (tracked in change marks) in Section 2 into TR 26.957. 
2 Proposed Updates on Proxy Caching 
6.3.3
Gap Analysis w.r.t. Existing 3GPP Technologies

6.3.3.1
Partial Representation Caching

John's DASH-enabled device sends HTTP GET segment requests by parsing a specific Media Presentation Description (MPD). Prior to serving John's segment requests, the proxy cache may have served other DASH clients with the same media presentation where they created HTTP GET segment requests by parsing the same MPD as John's DASH-enabled device. The proxy cache may cache segments which have been sent to other clients for serving future clients requests. As DASH clients request segments, but also switch Representations dynamically, the proxy cache may cache multiple Representations, each of which may be completely or only partially cached. A partially cached Representation is defined as a Representation having segment gaps, i.e. not all segments of the Representation are cached. 
6.3.3.2
Next Segment Caching

CDNs can optimize the delivery of DASH resources by pre-caching segments and subsegments into the cache. 
This is issue is specifically relevant in the case of using segmented Representations in an On-Demand case. In case a single Representation is used, the use of byte ranges provides sufficient indication for the CDN to prefetch additional data. 

One way to accelerate delivery of segmented content over a CDN is to have the proxy server pre-fetch the next segment from origin at the same time as it retrieves the current segment. This means that the segment is ready and waiting when the next request arrives from the client.Since this proxy server serving the media segment is not necessarily the same server which served the MPD, it has no visibility in to what the next segment might be. Additionally, it is stateless, and retains no knowledge of prior requests or related MPD requests. 


6.3.3.3
Multi-CDN Offering

A content provider may want to utilize multiple CDNs for content delivery, e.g. because some CDNs offer better coverage in certain regions. The content offering can include all available delivery choices (e.g. multiple baseUrls). The content provider can use suitable signalling as defined by SAND to steer the DASH client to a certain CDN.

6.3.4
Potential Solutions including Relevant SAND Functionality

To realize partial representation caching, SAND can be used to inform DASH clients about partially cached representations, e.g., via use of the PER messages ResourceStatus and DaneResourceStatus. Moreover, toward realizing next segment caching, SAND can be used by DASH clients to inform the network (i.e., DANE) anticipated DASH segments, acceptable alternative content, etc. leading to next segment caching, e.g., via use of the status messages AnticipatedRequests, AcceptedAlternatives, and NextAlternatives. 
An example workflow realizing next segment caching is depicted in Figure X, where DANE (PSS Server) caches content based on SAND-based status messages received from the DASH client (PSS client).


[image: image1]
Figure X – Example SAND workflow for Proxy Caching use case
· Step 1: The SAND capability exchange between the DANE and client will negotiate the use of the related SAND messages for proxy caching (using the SAND messages ClientCapabilities and DaneCapabilities). More specifically, based on the messageType values documented in Table 4-3, the DANE and DASH client negotiate the use of the following SAND messages:
· PER: 13, 14, 20, 21
· Status Messages: 6, 8, 11, 12
Step 2a: Client issues an HTTP GET and sends request for media to the DANE. In the header of the HTTP request, client includes the SAND header that contains the status messages on proxy caching, namely on anticipated requests, accepted alternatives and/or next alternatives (SAND messages 6,8,11). DANE receives these status messages, processes them and then forwards the SAND header that contains the status messages.

Step 2b: The DANE forwards the HTTP request for the desired media to the content server, since the DANE does not have a cached version of the media. DANE forwards the HTTP headers carrying SAND messages to without any modification.
Step 3a: Content server responds with HTTP 200 OK with body containing media

Step 3b: In the HTTP response, DANE includes SAND header to advertise availability of PER messages on proxy caching with the URI hosted at the DANE for the corresponding PER messages, namely on resource status, DANE resource status and/or delivered alternatives (SAND messages 13, 14, 20). 

Step 4: Client issues an HTTP GET request targeting the URI hosted at the DANE to fetch the PER messages on proxy caching, namely on resource status, DANE resource status and/or delivered alternatives (SAND messages 13, 14, 20). In the header of the HTTP request, client may include the SAND header that contains further status messages on proxy caching, namely on anticipated requests, accepted alternatives and/or next alternatives (SAND messages 6,8,11).

Step 5: DANE responds with the HTTP OK with body containing the PER message on proxy caching, namely on resource status, DANE resource status and/or delivered alternatives (SAND messages 13, 14, 20).

Steps 6,7: Client requests and downloads cached media from DANE.

DANE (PSS Server)



DASH client (PSS client)



Content Server



Step 1: SAND Capability Exchange



HTTP GET (destination=DANE) (URI=media) (header=6,8,11)



HTTP 200 OK (body=media) 



Step 2a



Step 3a



Step 3b



Step 4



HTTP 200 OK (body=media) (header=SAND, URI)



HTTP GET (destination=DANE) (URI=SAND URI) (header=6,8,11)



HTTP 200 OK (body=13,14,20) 



Step 5



Step 6



HTTP GET (destination=DANE) (URI=cached media)



HTTP 200 OK (body=cached media) 



Step 7



HTTP GET (destination=Content Server) (URI=media) (header=6,8,11)





Step 2b





- 1/4 -

