Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG SA4 MBS SWG #69 on TRAPI
S4-AHI637
August 24, 2016, Telco
Agenda item:
4
Source:
Qualcomm Incorporated, Expway
Title:
TRAPI: Service APIs
Document for
Agreement

1 Introduction
Based on the discussions and agreements in the telco, this document uses the methodology that was agreed to document the service APIs. Specifically, the outline and documentation is used.
2 Motivation and Background
We have reviewed different approaches for the service API and we base our documentation on implementation knowledge and the rationales provided inline.
3 Service API
3.2 Graphical Presentation

[image: image1.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerFdApp()

deregisterFdApp()

getFdServices()

registerFdResponse()

 Figure 1 Application to MBMS function API
Figure 2 provides an overview of the graphical representation of multiple application connecting to MBMS Service API.

Figure 2 Multiple Applications connecting to MBMS Client
3.3 Services Provided

eMBMS Service API provides interfaces for different types of eMBMS services defined in 3GPP 26.346(or add a spec to the reference document and use the reference here). Each of the services is exposed as a self-contained interface (IDL interface).
Note : eMBMS Service specific service types approach enables applications to use different eMBMS services independently. An Application interested only in streaming service does not need to provide an empty implementation of the callback listener for the file delivery service and vice versa. This also allows for MBMS client implementations where only some services are available and not others.
1. File Delivery Service

File Download Service provides application with an interface to access file download services. Application may get information about available eMBMS file download services and files. Application my start or stop capture of upcoming files on available service. MBMS Client provides application with updates on service status and availability. More interfaces described in IDL.

2. DASH-over-MBMS Streaming Service

DASH streaming service provides application with an interface to access DASH streaming services. Application may get information about available DASH streaming services. Application may start or stop any available DASH streaming service. MBMS Client provides application with DASH service MPD as well updates on service status and availability. More interfaces described in IDL.
3. RTP-over-MBMS Streaming Service (in progress)
RTP-over-MBMS Streaming Service provides the application with interfaces to access RTP eMBMS Service. The application may request start or stop any available RTP streaming service. Application will receive information about the RTP data.
3.4 File Delivery Service API

The File Delivery Service API provide a file capture service for files sent over Type 1 Application Services. It is intended to support applications that are running while files are being broadcast as well as applications that they the user may quit/exit and therefore may not be running to receive the files being broadcast.

In order to support application that may not be running while files are being received, the MBMS will persistently keep received files for a period of time configured by the application, which should include behaviors to collect received files even if the user does not actively interacts with the application to consume the app files.

When the application is running and can collect the files received over broadcast, the MBMS client will move/copy the files to the application space. It is untimately the application’s responsibility to manage the storage of requested files, especially the amount of storage to be used. Any persistant storage of received files by the MBMS client is only intended to ensure that the received files are made available to the respective requesting application. Once files are move/copied to the app space, the app is responsible for managing those files.
3.4.1 File Delivery Use Cases and Message Flows
3.4.1.1 File Delivery Service Registration

[image: image14.emf]

Application Application

URL Dispatch

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Figure 3 Application Registration sequence diagram
MBMS Aware Application calls a registerFdApp() API to register for consuming File Delivery services. At registration the application provides its implementation of the File Delivery service callback listener. File Delivery service will provide async callbacks and unsolicited notification to the application via the callback listener. The parameters for the registerFdApp() API are:
·

· string appId – provides a unique ID for the application registerting with the MBMS client, which uses this identity to maintain state information (e.g., capture requests and captured files) for a particular MBMS Aware Application.
· any platformSpecificAppContext – a platform-specific context for the registering app that enables the MBMS client to get extra information about the application that may be need to enable to app to have access to MBMS services, e.g., to enable app authentication.
· For Android this is Context class, see https://developer.android.com/reference/android/content/Context.html for details.

· sequence<string> serviceClassList – provides the list of service classes which the application is interested to register. This also signals to the MBMS client to only report to the application via the getFdServices() the Type 1 service IDs that are associated one of the service classes in this list.

· The application will be pre-configured with the set of service classes that allows it to consume the Type 1 services associated with these service classes.

· The application may change the list of active service classes it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdServiceClassFilter() while the application is registered with the MBMS client to consume Type 1 services.

· string locationPath – optionally identifies a local directory on the device, on the application available and accessible storage location, where successfully collected files will be copied/moved before making the file available to the application.

· If not defined for an application, the MBMS client will select a local directory on the device, on the application available and accessible storage location.

· The application may change the selected locationPath it has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdStorageLocation() while the application is registered with the MBMS client to consume Type 1 services.

· Any updates to the currently defined locationPath for an application will only take effect for the next new file the MBMS client receives for that application.
· unsigned long registrationValidityDuration – the period of time following the application de-registration, and possible exit, over which the eMBMS client still considers the application registered for the purpose of fulfilling any outanding startFileCapture() requests. This enables the app to allow the eMBMS client to capture files in the background when the application is not running. The application developer is to be aware that received files belong to the application and that the MBMS client does not provide content management functions beyong reception and temporary storage of received files inbetween consecutive runs of the application.
· Once registrationValidityDuration period after the last app de-registration expires, the MBMS client will cancel all outstanding startFileCapture() requests and delete all files collected for the app that are still present on the MBMS client storage space.

· The default value of this option is 0 which signals to the the eMBMS client to clear any outstanding startFdCapture() requests for that application upon its de-registration, and possible exit.

· The MBMS client may be constrained to support a maximum registrationValidityDuration. If the application requested registrationValidityDuration is larger than that value, the MBMS client will provide the acceptedFdRegistrationValidityDuration
 via the registerFdResponse(), which will be the minimum between the registrationValidityDuration the application requested and the maximum registrationValidityDuration the MBMS client can support.
· Guideline: The application selects a value for this parameter to constrain the amount of storage the MBMS client will use to collect and keep application-requested files in the MBMS client storage space while the app is not running. The amount of files cached for an application that does not collect its files may impact the MBMS client’s ability to collect files for other applications. In selecting a value for the registrationValidityDuration the following should be considered:
· The frequency and amount of files received during the selected registrationValidityDuration. For instance, assuming an application that delivers 100MB worth of files every day:

· The appplication could select a registrationValidityDuration of Nx24h (e.g., N=10) to request the MBMS client to store at most Nx100MB (e.g., 1GB) if the app is not run by the user in Nx24h.
· The application could ask its user (or have a preconfigured behavior on) how long the user wants files to be collected in-between the user’s access to files delivered to the application. If the user selects a long period (e.g., 2months) the app should not use that large values as the registrationValidityDuration (e.g., this could mean 6GB in the example above). Instead, the application should include behaviors to periodically re-register (e.g., every 5days) and collect received files to manage storage of its application files. Leaving those files in the MBMS client storage space (e.g., 6GB) could exceed the MBMS client storage space allowance and impact the reception of files for other applications.
· The relevance of older vs. newer files when managing the storage for files received if the user does not access the application over a long period of time.

· The application could ask the user how much storage to use for reived files and whether to delete older files (newer files preferred), or stop new downloads (older preferred), or however else the application choses to support managing received files.

· As described above, in the absence of the user launching the Type 1 service app with outstanding startFdCapture() requests, that app should automatically re-register (e.g., every 5days as discussed above) with the MBMS client with a periodicity not greater than registrationValidityDuration and retrieve files captured during the period the app was not running.

· The application should then manage the downloaded files with respect to the amount of storage consumed by files of that app. For instance, the app may prioritize retaining newer versues older files or let the registrationValidityDuration expire (therefore causing the MBMS client to stop continued file downloads for that app) if the user does not consume file contents for that app.

· Examples 1: Daily headline news app allows the user to collect files from 2 Type 1 services with new/updated video clip files downloaded twice every day.

· The app registrationValidityDuration is 2days, it re-registers wth the MBMS client every 1.5 days and it keeps only the files that are no more than two days old, e.g., as configured by the user.

· Examples 2: Weekly magazine app allows the user to collect files from a Type 1 service with new/updated files for selected electronic versions of weekly magazines downloaded once a week.

· The app registrationValidityDuration is 15days, it re-registers wth the MBMS client every 7days and it keeps only the files that are no more than three weeks old, e.g., as configured by the user.
· ILTEFileDeliveryServiceCallback cb – provide the MBMS client with the call functions associated with Type 1 service APIs.
Note: Callback listener provided at time of registration since they are expected to be called at the same time. It also allows async registration errors/callbacks
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement data over the broadcast channel and caches the eMBMS services definition.

Once registered, application may start making calls on the File Delivery service interface. For example, application may request retrieval of the eMBMS File Delivery service list. The GetFileDeliveryServices() interface returns the complete list of available File Delivery services information, including service_id, service name, lang, file URIs, etc.

When application is no longer interested in consuming File delivery services, it calls deregisterFdApp() interface

3.4.1.2 File Delivery Service Registration Response
As illustrated in figure 3, the MBMS client will respond to an Application call to the registerFdApp() API with a registerFdResponse() call back providing the result of the registration request. The parameters for the registerFdResponse() API are:

· EmbmsCommonTypes::RegResponseCode value – provides a result code on the registration request. The allowed valuesa are:

· REGISTER_SUCCESS – indicates that the registration has been processed and the application can proceed with other API interactions with the MBMS client for Type 1 services
.
· FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE – Indicates that an MBMS client was not available on the device which the application is running and no eMBMS service will be available to the application.
· String message – provides an associated text description of the error message.

· unsigned long acceptedFdRegistrationValidityDuration – included when returning REGISTER_SUCCESS, it indicates the registration validity duration the MBMS client will provide to the registering application. It can be the registrationValidityDuration the application requested, or the maximum validity duration that the MBMS client can support. The application should adjust its expectations accordingly if the value returned is not what was requested.
3.4.1.3 Getting information on available File Delivery Services

As illustrated in figure 3, after a successful registration with the MBMS client, the MBMS Aware Application can use the getFdServices() API to discover the available File Delivery services associated with the service classes registered via the registerFdResponse(). The getFdServices() API returns a list describing the available File Delivery services, where each service is described by the following parameters:

· sequence<ServiceNameLang> serviceNameList – optionally provides a list of the service name in possibly different languages.
· string name – indicates the service name on the language identified in the lang parameter.

· string lang – identifies a language using the TBD format.

· string serviceClass – identifies the service class which is associated with the service.

· string serviceId – provides the unique service ID for the service.

· string serviceLanguage – indicates the language for the service.

· EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability – signals whether the device is currently in the broadcast coverage area for the service. The possible values are:
· BROADCAST_AVAILABLE – the service is available via broadcast at the current device location, and the activeDownloadPeriodStartTime and activeDownloadPeriodEndTime define whether there is any active transmissions at the current time.

· BROADCAST_UNAVAILABLE – the service is not currently available via broadcast at the current device location. Files may still be received via unicast.

· sequence<string> fileUriList – optionally provides a list of file names for the files that are currently scheduled to be transmitted if advertised to the MBMS client by the network via the schedule description metadata fragment. The MBMS clien will only include fileUri(s) from the fileSchedule in the schedule description if there is a current or a future scheduled transmission of that file.
· EmbmsCommonTypes::Date activeDownloadPeriodStartTime – signals the current/next active file download service start time, when files are broadcast over the air. This allows the application to determine if broadcast state for the service as follows:
· If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files are being broadcast for the service at the current time.
· If the activeDownloadPeriodStartTime is in the future, there is currently no broadcast being made for the service, but broadcast transmission is currently scheduled to start at this advertised time.

· If the activeDownloadPeriodStartTime is set to zero, there is no currently defined broadcast schedule time for the service.
· EmbmsCommonTypes::Date activeDownloadPeriodEndTime – signals the current/next active file download service stop time, when files stop being broadcast over the air. This allows the application to determine if broadcast state for the service as follows:
· If the current time is such that activeDownloadPeriodStartTime ≤ current time ≤ activeDownloadPeriodEndTime, files are being broadcast for the service at the current time, but transmissions will end at activeDownloadPeriodEndTime.

· If the activeDownloadPeriodEndTime is in the past, there is currently no broadcast being made for the service, and there is no currently scheduled broadcast time for the service.
3.4.1.4 Setting the storage location

[image: image2.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

setFdStorageLocation()

registerFdResponse()

Figure 4 Sequence diagram for updating the storage location for collected files
While an application is actively registered with the MBMS client to consume Type 1 services, the MBMS Aware Application can call the setFdStorageLocation() API to set the location where files collected for the application are to be stored, if not done via the registerFdApp() API. The MBMS Aware Application can also invoke the setFdStorageLocation() API to update the previously defined storage location.

· StorageLocationPath locationPath – identifies a local directory on the device, on the application available and accessible storage location, where successfully collected files will be copied/moved before making the file available to the application.

· While the storage location is not defined for an MBMS Aware Application, via the registerFdApp() or the setFdStorageLocation() the MBMS client will select a local directory on the device, on the application available and accessible storage location.

· The application may change the selected locationPath has registered via a new registerFdApp(), after a deregisterFdApp(), or via setFdStorageLocation() while the application is registered with the MBMS client to consume Type 1 services.

· Any updates to the currently defined locationPath for an application will only take effect for the next new file the MBMS client receives for that application.

3.4.1.5 Start Capture:

[image: image3.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 5 File Delivery Application Start Capture
After registration application can make API calls to the File Delivery service interface. Application can make calls on the startFdCapture() API to the select fileURIs for the files to be receviedover broadcast. The fileURI identify the names for the files and they will also be used on the Type 1 service FLUTE FDTs to also identify the files being sent on the FLUTE session. It is recommended that http:// or file system names c:/user/… be used as fileURIs; the fileURI format is not validated by the MBMS client.

After capturing the files requested on a startFdCapture request, the MBMS Client will send a fileAvailable() notification via the registered callback listener.

When application is no longer interested in consuming the File Delivery Service, it calls the stopFdCapture() interface which will stop download of files for the service over broadcast.
The parameters for the startFdCapture() API are:

· string serviceId – identifies the Type 1 service where the MBMS client is to try an capture the files indicated in fileUri.
· string fileUri – identifies the files to be captured on the service identified in serviceId. Allowed values include:

· The empty string signals that the application is interested in receiving all new files and updates to previously received files.
· A BaseURL, i.e., a complete path for subdirectory (a prefix) identifying a group of files under that directory.

· An application may make use of this option if it orginzes its files in a structured way (in a directory) such as to allow the identification of a group of files. For instance, a headline news clips app may group files under a …\sports\, a …\politics\, etc. folder and allow the user to select what type of headline news of interest and there for request the MBMS client to capture all the files under …\sports\ if the user is only in terested in sports headline news.

· An absoluteURL, i.e., a complete URL that indenfies a single file resource. An FOTA application on a given OEM device model may be preconfigured with an absolute URL for the file name that identifies the software image for that device model. That application would use that absolute URL as the file URI when resquest that its software image be received on a FOTA Type 1 service.
· The MBMS client will fail a startFdCapture() with an FD_DUPLICATE_FILE_URI error if the requested fileURI matches an existing outstanding startFdCapture() request.

· Guideline: As described in section XXX, the application will use a stopFdCapture() API to stop the reception of files requested on a startFdCapture() request. The application should avoid having ambiguous startFdCapture() requests, for instance one requesting files that match http://example.com/servicex/sport/ (using a BaseURL) and another requesting a file that matches http://example.com/servicex/sport/file5.mp4 (using an absolute URL).

· The MBMS client will enforce that each outstanding startFdCapture() is unambiguous as follows:

· The MBMS client will fail a startFdCapture() with an FD_AMBIGUOUS_FILE_URI error if the requested fileURI is more specific and matches an existing outstanding startFdCapture():
· When fileURI is an absoluteURL or a BaseURL and there is an existing outstanding startFdCapture() with an empty fileURI.

· When fileURI is an absoluteURL and there is an existing outstanding startFdCapture() with an BaseURL in the fileURI that is base URL for the aboluteURL.

· The MBMS client will fail a startFdCapture() with an FD_DUPLICATE_FILE_URI error if the requested fileURI matches an existing outstanding startFdCapture().

· The MBMS client will remove existing outstanding startFdCapture() requests when the requested fileURI on a startFdCapture() is broader (i.e., superceding older requests) than these existing outstanding startFdCapture() requests; this request consolidation will not impact on going file downloads:

· When fileURI is empty on the new startFdCapture(), all existing outstanding startFdCapture() are removed. The application may use the getFdActiveServices() API to get back in synch with fileURI in remaining outstanding startFdCapture() requests, see section 3.3.1.12.

· When fileURI is a BaseURL, existing outstanding startFdCapture() requests with an absoluteURL are removed if the new fileURI in the request is a base URL for the aboluteURL on these existing outstanding startFdCapture().

· Note: once the MBMS client combines more specific outstanding startFdCapture(), e.g., with absoluteURLs, with a new startFdCapture(), e.g., with a BaseURL, the total number of outstanding startFdCapture() requests is smaller. The application may use the getFdActiveServices() API to get back in synch with fileURI in remaining outstanding startFdCapture() requests, see section 3.3.1.12.
· boolean disableFileCopy – when set to true, signals that the application is aware that there may be other applications that also want to consume files for this service and therefore the MBMS client is not to copy the file to the application space defined by the registered locationPath. When the MBMS client is asked not to copy a file, the MBMS client still includes the availabilityDeadline when signaling the fileAvailable() notification for a file reception matching this startFdCapture() API request.
· boolean captureOnce – when set to true, signals that the file requested via the fileURI (or a file matching a BaseURL in fileURI, or any file if the fileURI is empty) is to be captured only once. After that file is captured, the MBMS client will remove that requested fileURI from its list of active capture requests. Any subsequent transmissions of a file matching that fileURI will not be captured until a new startFdCapture() requests that file again.
3.4.1.6 File Available Notification

As illustrated in figure 5, once the MBMS client has successfully collected a file that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client will invoke the fileAvailable() callback function (which the application registerd with the MBMS client via the registerFdApp() API) while that application has not de-regstered, to let it know the information on the file that has been received. The parameters for the fileAvailable() API are:

· string serviceId – identifies the Type 1 service on which the MBMS client captured the file indicated in fileUri.
· The following is the file information for the received file:

· string fileUri – identifies the file captured on the service identified in serviceId. The MBMS client will invoke the fileAvailable() for each received fileUri individually.
· string fileLocation – indetifies the location where the MBMS Aware Application can find the collected file. Possible location alternatives are:
· A complete file name (including the directory path) on the UE local file system where the file can be accessed.

· The file can be stored under the directory in the currently defined locationPath (either via the registerFdApp() or the setFdStorageLocation()), if the MBMS client is successful in copying/moving the collected file to that locationPath.
· The file can be stored under an MBMS client defined directory that is accessible to the application if the MBMS client is not successful in copying/moving the collected file to the currently application defined locationPath.

· An HTTP URL where the MBMS Aware Application can retrieve the file using the HTTP GET method. This format is used when the MBMS client is not able to copy/move the collected file to the storage area defined by the locationPath, or another location that is accessible to the application.
· string contentType – indicates the MIME type for the file identified in the fileUri, if a MIME type was defined via the FDT describing that file transmission.
· unsigned long availabilityDeadline – signals a deadline when the file stored at the fileLocation will be removed from the MBMS client storage location, if the file was not copied/moved to the currently application defined locationPath (i.e., fileLocation is not under the locationPath or it is an HTTP URL).
3.4.1.7 File Download Failure Notification

[image: image4.emf]startFdCapture()

fileDownloadFailure()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) but fail

FEC decoding of file

stopFdCapture()

Figure 6 Signaling download failures
As illustrated in figure 5, once the MBMS client has attempted to collect symbols for a file (possibly even via the unicast file repair procedure), that matches an outstanding startFdCapture() request from an MBMS Aware Application, the MBMS client may still not be able to recover the file. Once the MBMS client detects that it failed FEC decoding the file, the MBMS client will invoke the fileDownloadFailure() callback function (which the application registerd with the MBMS client via the registerFdApp() API) while that application has not de-regstered, to let the application know that the reception for a requested file has failed. The parameters for the fileDownloadFailure() API are:

· string serviceId – identifies the Type 1 service on which the MBMS client failed to captur a requested file indicated in fileUri.
· string fileUri – identifies the file which failed being received on the service identified in serviceId.
3.4.1.8 File List Available Notification

[image: image5.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,fileURI1)

startFdCapture(S2,fileURI2)

Collect Files Matching

startCapture(S2,fileURI2) requests

registerFdApp()

fileListAvailable(S2)

getFdAvailableFileList(S2)

Figure 6 Sequence diagram for notifying the application about collected files
As illustrated in figure 5, an MBMS Aware Application that is running when a requested file is successfully received is notified of the availability of the new file via the fileAvailable() API. Figure 6 illustrates what happens when an application registers to consume Type 1 services with a non-zero registrationValidityDuration, asks different files to be captured (possibly from different Type 1 services), and then de-registers. During the registrationValidityDuration period following the application de-registration, the MBMS client collects files matching the outstanding capture requests from the applicatioin and keeps the files in its cache while the application is not running, see section 3.3.1.1.

Once the application re-registers with the MBMS client, the MBMS client copies the received files to the locationPath the application registered via the registerFdApp() API and invokes the fileListAvailable() callback function for each service that had files collected while the application was not registered. This lets the application know that a list of files have been received for the application and these files are ready to be retrieved. The parameter for the fileListAvailable() API is:

· string serviceId – identifies the Type 1 service for which the MBMS client captured files on behalf of the application while the application was not registered with the MBMS client.
Note: while an MBMS Aware application is deregistered and files are received for that application, if multiple versions of the same file (i.e., the same fileURI but different Content-MD5 in the FDT for a Type 1 service) are received, only the last file version received is kept by the MBMS client and made available to the application after the new registration.
3.4.1.9 Getting the List of Available Files

As illustrated in figure 6, once the MBMS Aware Application re-registers with the MBMS client, the MBMS client copies the received files to the registered locationPath and invokes the fileListAvailable() callback function to let the application know that a list of files have been received for a service and are now ready to be retrieved. That application can then invoke the getFdAvailableFileList() API to retrieve information on these received files. The parameters for the getFdAvailableFileList() API are:

· string serviceId (input parameter) – identifies the Type 1 service with files the MBMS client captured for the application.
· A list of file information (output parameter) – the same set of file parameters defined for the fileAvailable(), with the same defintions, is provided for each received file, including the fileLocation in not in the registered locationPath and an associated availabilityDeadline if the MBMS client was not able to copy/move the file to the registered locationPath.
3.4.1.10 Notification callback

[image: image6.emf]MBMS Aware

Application

MBMS Client

BM-SC

getFdServices() Return list of File Delivery

services defined in

service announcement

Periodic

 Service Discovery(based on configuration par

ameter)

registerFdApp()

fdServiceListUpdate()

registerFdResponse()

Figure 7 MBMS update notification to registered File Delivery application
At registration time, the application sets a callback event listener via arguments on the registerFdApp(). MBMS client uses this interface to send callbacks and notifications of events to the application. For example, as the MBMS client periodically downloads service announcement updates, it sends a notification of fdServiceListUpdate () to the application to signal that the list of services previously retrieved is updated.

Note: The callback interface provides an efficient method to give instantaneous service updates to the application.
3.4.1.11 Stop Capture:

[image: image7.emf]startFdCapture()

fileAvailable()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive file(s) and

perform FEC decode

stopFdCapture()

Figure 8 File Delivery Application Stop Capture
As indicated in section XXX, the application can make startFdCapture() API calls to the select fileURIs for the files to be received over broadcast. These startFdCapture() calls identify the file (via an absolute URL) or files (via a BaseURL or not specifying a specific fileURL). The application should cache these requested fileURI and use the stopFdCapture() API to signal to the MBMS client when the app no longer wishes to receive files with fileURIs that match these earlier capture requests. Upon receiving a stopFdCapture() request that matches the fileURI of an earlier startFdCapture() request, the MBMS client will stop any on-going and future file receptions that match that particular request.

The parameters for the stopFdCapture() API are:

· string serviceId – identifies the Type 1 service where the MBMS client is to stop capturing the files indicated in fileUri.
· string fileUri – identifies the files from a previous startFdCapture() request for the service identified in serviceId. Allowed values include:

· The empty string signals that the application is canceling a previous startFdCapture() request with an empty string.

· A BaseURL signals that the application is canceling a previous startFdCapture() request with the same BaseURL.

· An abdolute URL signals that the application is canceling a previous startFdCapture() request with the same abdolute URL.

· Guideline: Since the MBMS client will reject abuguous startFdCapture() requests, as described in section XXX, from the application or consolidate new and existing outstanding requests as described in that section:
· The MBMS client will keep records for outstanding startFdCapture() requests that are unambiguous and that can be separately stopped via a stopFdCapture() request.
· Similarly to the startFdCapture(), the MBMS client will also fail a stopFdCapture() request with a FD_AMBIGUOUS_FILE_URI error code when the requested fileURI on a stopFdCapture() is more specific than an existing outstanding startFdCapture() requests that is broader:

· When fileURI is an absoluteURL or a BaseURL and there is an existing outstanding startFdCapture() with an empty fileURI.

· When fileURI is an absoluteURL and there is an existing outstanding startFdCapture() with an BaseURL in the fileURI that is base URL for the aboluteURL.

· The MBMS client will return a success to any stopFdCapture() request that does not match a corresponding existing and outstanding startFdCapture() request.
Note: If the MBMS Aware application has not properly cached the list of fileURIs on its outstanding startFdCapture() requests, the application should involve the getFdActiveServices() API described in section 3.3.1.11 to re-syncrhonize on the its outstanding startFdCapture() requests.
3.4.1.12 Getting the list of outstanding fileURIs being captured

[image: image8.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

deregisterFdApp()

registerFdResponse()

startFdCapture(S1,BaseURL1)

registerFdApp()

stopFdCapture(S1,BaseURL1)

getFdActiveServices()

Figure 9 Sequence diagram for an application to collect info on outstanding startFdCapture() requests
An MBMS Aware application should keep track of its outstanding startFdCapture() requests and only issue stopFdCapture() with a fileURI that matches an outstanding startFdCapture() request. Figure 9 illustrates that the application may also invoke the getFdActiveServices() API to reteieve the fileURI for these outstanding startFdCapture() requests, especially after a new registration or if a more recent startFdCapture() with a BaseURL superseded an earlier startFdCapture() with an AbsoluteURLs as discussed in section 3.3.1.5. The parameter for the getFdActiveServices() API are:

· A list of service IDs and the associated fileUri for each of the outstanding startFdCapture() for which the MBMS client is actively trying to collect files. Each entry in such a list includes:

· string serviceId – identifies the Type 1 service over which the MBMS client is to try capture files from outstanding startFdCapture() requests.
· sequence<string> fileUriList – identifies the fileURI(s) for outstanding startFdCapture() requests for the service identified by the serviceId.

3.4.1.13 Notification on state change for files

[image: image9.emf]MBMS Aware

Application

MBMS Client

registerFdApp()

fileDownloadStateUpdate(S1)

registerFdResponse()

startFdCapture(S1,BaseURL1)

fdServiceListUpdate()

getFdDownloadStateList()

getFdServices()

getFdDownloadStateList()

Figure 10 Sequence diagram for notifying the application about changes to the state of files being collected
As illustrated in figure 10, after an MBMS Aware Application registers with the MBMS client and requests that files to be captured, the MBMS client may issue fileDownloadStateUpdate() notifications to an application to signal that the state the MBMS client maintains for file(s) received or being received for the application has changed. The parameter for the fileListAvailable() API is:

· string serviceId – identifies the Type 1 service for whichthe state the MBMS client maintains for file(s) received or being received for the application has changed.
3.4.1.14 Getting the state on file(s) received or being received

An MBMS Aware application may be interested to retrieve the current state for files downloaded or being downloaded by the MBMS client on behalf of that application. As illustrated in Figure 10, the application may choose to request this information in response to a notification from the MBMS client of such state change via a fileDownloadStateUpdate() notification.

The application may also detect via updated service definition information (i.e., via a fdServiceListUpdate() followed by a getFdServices()) that a file previously advertised on an earlier getFdServices() and which the application requested to be capture is no longer described on the information retrieved via the latest getFdServices(), and the application did not receive a fileAvailable() or a fileDownloadFailure() reporting the successful or failed reception of the requeste file, respectively. This could happen because the requested file is no longer advertised as available for request (there is no current of future transmission for the file described on a fileSchedule in the scheduled description fragment), but the file is still pending file repair.
An interested application can request information on the current state for files requested to be downloaded by the MBMS client on behalf of that application by involking the getFdDownloadStateList() API. The getFdDownloadStateList() API includes the following parameters:
· string serviceId (input parameter) – identifies the Type 1 service for which the application wants the MBMS client to report on the state on files downloaded or being downloaded on behalf of the application over that service.
· A list of fileUri and the associated download state information (output parameter) for files downloaded or being downloaded on behalf of the application. For each entry on this list the following is described:
· A fileUri – identifies one fileURi matching an outstanding startFdCapture() requests for the service identified by the serviceId.

· If an entry is not defined for a file of interest that the application previously requested to be captured by the MBMS client, the application is to assumed that the MBMS client has not started collecting symbols for that file.

· If the file of interest is not advertised in the fileUriList of the getFdServices() API, see section 3.3.1.3, the application is to assume that there is no currectly defined transmission schedule for the service.
· If the file of interest is not advertised in the fileUriList of the getFdServices() API, but it was advertised on an earlier call to the getFdServices() API, the application is to assume that the previously scheduled reception of that file has been cancled or it has failed.

· DownloadState state – identifies the download state for the file being described in fileURI.

· The MBMS client will signal the state to be FD_IN_PROGRESS if when the MBMS client has started collecting the file in fileUri. In particular, the MBMS client will report this state when there are no current or future transmissions schedules for the file and the MBMS client is pending completion of the unicast file repair procedure.
3.4.1.15 Notification of updates to the service definition

As illustrated in figure 10, after an MBMS Aware Application registers with the MBMS client and possibly requests that files are captured, the MBMS client may issue fdServiceListUpdate() notifications to an application to signal that there have been changes to the definition of Type 1 services associated with the service classes the application has registered with the MBMS client.
The MBMS client will invoke the fdServiceListUpdate() whenever there has been a change to the parameters reported to the application in response to a getFdServices() API, as defined in section 3.3.1.3, for any of the services associated with the registered service classes. This will include additions and removals of Type 1 list of services associated with registered service classes; changes to the serviceBroadcastAvailability state for service(s); updates to the fileUriList, including changes to the current or a future scheduled transmission of file(s); and changes to the current activeDownloadPeriodStartTime and activeDownloadPeriodEndTime.
There are no parameter for the fdServiceListUpdate() API. In response to a fdServiceListUpdate() API notification from the MBMS client, the MBMS Aware application should invoke a getFdServices() API and process the updated information accordingly.
3.4.2 File Delivery Service IDL:

#include "EmbmsCommonTypes.idl"
module FileDeliveryService

{

 //Forward Declaration
 interface ILTEFileDeliveryServiceCallback;

 /**
 * @name DownloadState
 * @brief List of the file download state
 */
 enum DownloadState

 {

 FD_IN_PROGRESS /**< File download is in progress */
 };

 /**
 * @name FdErrorCode
 * @brief List of the errors for File Delivery service
 */
 enum FdErrorCode

 {

 FD_INVALID_SERVICE, /**< Invalid service ID */
 FD_DUPLICATE_FILE_URI, /**< There is another pending captue request for the specified file URI. */
 FD_AMBIGUOUS_FILE_URI, /**< The specified file URI cannot identify a pending capture request. */
 FD_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name cacheControl
 * @brief List of the errors for File Delivery service
 */
 enum cacheControlMode

 {

 FD_NO_CACHE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_NO_CACHE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_MAX_STALE, /**< The application uses Cache directives to manage how long to retain files.
 When FD_MAX_STALE is selected, the file (or set of files)
 won't be cached, which can be useful when the file is expected to be
 highly dynamic (changes to the file occur quite often) or if the file
 will be used only once by the receiver application. */
 FD_EXPIRES /**< The application uses Cache directives to manage how long to retain files.
 When FD_EXPIRES is selected, indicates the file has expected expiry time.
 In that case cacheControlExpires value is the expiry time*/
 };

 /**
 * @name RegisterFdResponseNotification
 * @brief Fd app registration information
 */
 struct RegisterFdResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registration value as defined in RegResponseCode */
 string message; /**< Message described the result */
 unsigned long acceptedFdRegistrationValidityDuration; /**< Accepted registeration validity duration */
 };

 /**
 * @name FileInfo
 * @brief Downloaded file information
 */
 struct FileInfo

 {

 string fileUri; /**< File URI */
 string fileLocation; /**< The physical location of the file or HTTP URL where the file can be accessed */
 string contentType; /**< MIME type as described in FDT of the file */
 unsigned long availabilityDeadline; /**< The maximum time that embms client guarantees to keep the file in its storage */
 };

 /**
 * @name RegisterFdAppData
 * @brief File delivery app registration information
 */
 struct RegisterFdAppData

 {

 string userId; /**< The user ID used during the registration */
 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext provides a
 platform-specific app context
 object to enable the API implementation to get extra information
 about the application. */
 sequence<string> serviceClassList; /**< List of service classes */
 StorageLocation locationPath; /**< Local storage location on the device where collected files are copied */

 unsigned long registrationValidityDuration; /**< The period of time in seconds that the eMBMS client honors
 the app registration and file capture requests
 after the app deregisters and exits.
 This enables the app to let the eMBMS client capture
 files in the background when the application is not running.
 Default value of this option is 0 which means middleware clears
 any outstanding startFdCapture requests.* /
 };
 /**
 * @name StartFdCaptureData
 * @brief File delivery start capture information. It is used in StartFdCapture API
 */
 struct StartFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI for the file(s) to be captured.
 If empty, this implies capture all files. If an absolute URL,
 this implies only the capture of that particular file.
 If a Base URL, this implies the capture of all files that have that Base URL. */
 boolean disableFileCopy; /**< Disables copying of files to register locationPath */
 boolean captureOnce; /**< Capture the file only once and the bearer would be deactivated after file gets downloaded*/
 };

 /**
 * @name StopFdCaptureData
 * @brief File delivery stop capture information. It is used in StopFdCapture API
 */
 struct StopFdCaptureData

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI. If empty, then it stops capture on all files.
 The path of the URI should contain the complete folder or file name. */
 };

 /**
 * @name FileList
 * @brief List of file URIs
 */
 struct FileList

 {

 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name FdServiceInfo
 * @brief File delivery service information
 */
 struct FdServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceBroadcastAvailability; /**< Service broadcast availability */
 sequence<string> fileUriList; /**< List of file URIs */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 };

 /**
 * @name FdServices
 * @brief List of FD service info objects
 */
 typedef sequence<FdServiceInfo> FdServices;

 /**
 * @name FdServiceClassList
 * @brief ServiceClass information that the app is interested in. It is for the SetFdServiceClassFilter API.
 */
 typedef sequence<string> FdServiceClassList;

 /**
 * @name ActiveFdServiceList
 * @brief List of File delivery service ID from FdServiceInfo
 * @see getFdActiveServices()
 */
 struct ActiveFdServiceList

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */

 sequence<string> fileUriList; /**< List of file URIs */
 };

 /**
 * @name StorageLocation
 * @brief Local storage location on the device where collected files are copied.
 * It is used in the SetStorageLocation and registerFdApp API.
 */
 typedef string StorageLocation;

 /**
 * @name FileAvailableNotification
 * @brief Information about the downloaded file.
 */
 struct FileAvailableNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 FileInfo downloadedFileInfo; /**< Downloaded file information */
 };

 /**
 * @name FdServiceErrorNotification
 * @brief File delivery service error information. It is used by the FdServiceErrorNotification API.
 */
 struct FdServiceErrorNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 FdErrorCode err; /**< File delivery service error ID */
 string errorMsg; /**< error message */
 };

 /**
 * @name FileDownloadFailureNotification
 * @brief File download failure information.
 * @see FileDownloadFailureNotification()
 */
 struct FileDownloadFailureNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 };

 /**
 * @name InsufficientStorage
 * @brief Insufficient storage notification information
 * @see InsufficientStorage()
 */
 struct InsufficientStorageNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string fileUri; /**< File URI */
 string storagePath; /**< Storage path that does not have sufficient storage to complete the file download */
 unsigned long storageNeeded; /**< Storage needed to complete the file download */
 };

 /**
 * @name InaccessibleLocationNotification
 * @brief Inaccessible storage notification information
 * @see InaccessibleLocation()
 */
 struct InaccessibleLocationNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 string message; /**< Message with additional information */
 StorageLocation locationPath; /**< The path that is not accessible */
 };

 /**
 * @name FileDownloadStateInfoList
 * @brief List of file URIs
 * @see getFdDownloadStateList()
 */
 struct FileDownloadStateInfoList

 {

 string fileUri; /**< File URI. If empty, all file URIs for that service will be included in the returned list of getFdDownloadStateList. */
 DownloadState state; /**< State of files from DownloadState. */
 };

 /**
 * @name FileDownloadStateUpdateNotification
 * @brief File download state update notification information
 * @see fileDownloadStateUpdate()
 */
 struct FileDownloadStateUpdateNotification

 {

 string serviceId; /**< File delivery service ID from FdServiceInfo */
 };

 /**
 * @name GetFdDownloadStateListData
 * @brief Information needed to call getFdDownloadStateList(). The returned list of getFdDownloadStateList() is filtered based on the options set in GetFdDownloadStateList.
 * @see getFdDownloadStateList()
 */
 struct GetFdDownloadStateListData

 {

 string serviceId; /**< Active file delivery service ID from FdServiceInfo. */

 };

 /**
 * @name AvailableFileList
 * @brief List of FileInfo
 * @see getFdAvailableFileList()
 */
 typedef sequence < FileInfo > AvailableFileList;

 /**
 * @name FileListAvailableNotification
 * @brief File List Available notification information
 * @see fileListAvailable()
 */
 struct FileListAvailableNotification

 {

 string serviceId; /**<File delivery service ID from FdServiceInfo. */
 };

 interface ILTEFileDeliveryService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current File delivery service interface implementation
 @return Interface Version
 **/
 string getVersion();

 /**
 @name registerFdApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo Information required for application registration
 @param[in] cb Callback listener
 @see RegisterFdAppData
 @see registerFdResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerFdApp(in RegisterFdAppData regInfo, in ILTEFileDeliveryServiceCallback cb);

 /**
 @name deregisterFdApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls registerFdApp
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterFdApp();

 /**
 @name startFdCapture
 @brief Start download of files over file delivery service over broadcast
 @param StartFdCapture Struct includes parameters for StartFdCapture request
 @pre Application is registered for File Delivery service
 @see fileAvailable()
 @see StartFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startFdCapture(in StartFdCaptureData info);

 /**
 @name stopFdCapture
 @brief Stop download of files for the file Delivery service over broadcast
 @param stopFdCapture Struct includes parameters for stopFdCapture
 @pre Application is registered for File Delivery service
 @see StopFdCaptureData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopFdCapture(in StopFdCaptureData info);

 /**
 @name getFdActiveServices
 @brief Get list of currently active services
 @param[out] ActiveFdServiceList The list of services the app has
 @pre Application is registered for File delivery service
 @see ActiveFdServiceList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdActiveServices(out ActiveFdServiceList services);

 /**
 @name getFdAvailableFileList
 @brief Retrieves the list of files previously captured for the
 application.
 @param[in] File delivery service ID from FdServiceInfo
 @param[out] FileList List of files previously captured and filtered based on serviceId
 @pre Application is registered for File delivery service and received fileListAvailable() notification
 @see fileListAvailable()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdAvailableFileList(in string serviceId, out AvailableFileList files);

 /**
 @name getFdServices
 @brief Retrieves the list of File Delivery services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application
 @param[out] FDServices List of filtered File delivery services
 @pre Application is registered for File delivery service and received fdServiceListUpdate() notification
 @see fdServiceListUpdate()
 @see FdServices
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdServices(out FdServices services);

 /**
 @name getFdDownloadStateList
 @brief Retrieves the state of files pending download
 @param GetFileDownloadState Includes parameters for getFileDownloadState
 @pre Application is registered for File Delivery service and received fileDownloadStateUpdate() notification
 @see fileDownloadStateUpdate()
 @see GetFdDownloadStateListData
 @see FileDownloadStateInfoList
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getFdDownloadStateList(in GetFdDownloadStateListData info, out FileDownloadStateInfoList fdStateList);

 /**
 @name setFdServiceClassFilter
 @brief Application sets a filter on file delivery services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with file delivery service
 @see SetFdServiceClassFilterData
 @see fdServiceListUpdate()
 @see getFdServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdServiceClassFilter(in FdServiceClassList serviceClassInfo);

 /**
 @name setFdStorageLocation
 @brief Sets the storage location to store the application downloaded files
 @param[in] StorageLocation Includes parameters for setStorageLocation request
 @pre Application is registered for File Delivery service
 @see StorageLocation
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setFdStorageLocation(in StorageLocation locationPath);

 };

 interface ILTEFileDeliveryServiceCallback

 {

 /**
 @name registerFdResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for register File delivery response
 @pre Application called registerFdApp
 @see RegisterFdResponseNotification
 @see registerFdApp()
 **/
 void registerFdResponse(in RegisterFdResponseNotification info);

 /**
 @name fileAvailable
 @brief Notification to application when a new file is downloaded per
 application capture request
 @param FileAvailableNotification Includes parameters for the downloaded file
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileAvailableNotification
 **/
 void fileAvailable(in FileAvailableNotification notification);

 /**
 @name fdServiceListUpdate
 @brief Notification to application on an update of the available for file delivery services.
 Update may be due to the received USD or the network configuration
 @pre Application is registered for file delivery service
 @post Call getFdServices()
 **/
 void fdServiceListUpdate();

 /**
 @name fdServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startFdServiceCapture
 @see FdServiceErrorNotification
 **/
 void fdServiceError(in FdServiceErrorNotification notification);

 /**
 @name fileDownloadFailure
 @brief Notification to application that download of a requested file
 failed
 @param FileDownloadFailureNotification Includes information about the failed file download
 @pre Application is registered for File Delivery service and application called startFdCapture()
 @see FileDownloadFailureNotification
 **/
 void fileDownloadFailure(in FileDownloadFailureNotification notification);

 /**
 @name insufficientStorage
 @brief Notification to application that the storage location set by the
 application does not have enough storage for the upcoming file download
 @param InsufficientStorage Includes parameters to specify the file and
 storage requirement
 @pre Application is registered for file delivery service and application called startFdCapture()
 @see InsufficientStorage
 **/
 void insufficientStorage(in InsufficientStorageNotification info);

 /**
 @name inaccessibleLocation
 @brief Notification to application that the storage location set by the
 application is not accessible by the eMBMS Client
 @param InaccessibleLocation Includes the inaccessible storage path
 @pre Application is registered for File delivery service
 @see InaccessibleLocation
 Application calls setStorageLocation
 **/
 void inaccessibleLocation(in InaccessibleLocationNotification info);

 /**
 @name fileDownloadStateUpdate
 @brief Notify application of a change in the state of pending file
 downloads
 @param FileDownloadStateUpdate Includes parameters for fileDownloadStateUpdate()
 @pre Application is registered for File delivery service
 @post call getFdDownloadStateList()
 @see FileDownloadStateUpdate
 **/
 void fileDownloadStateUpdate(in FileDownloadStateUpdateNotification info);

 /**
 @name fileListAvailable
 @brief Notify application when the list of downloaded files is available to retrieve
 @param[in] FileListAvailable Includes parameters for fileListAvailable
 @pre Application is registered for File Delivery service
 @post call getFdAvailableFileList()
 **/
 void fileListAvailable(in FileListAvailableNotification info);

 };

};

module EmbmsCommonTypes

{

 //Common types
 typedef unsigned long long Date;

 /**
 * @name ResultCode
 * @brief The return value of the API
 */
 enum ResultCode

 {

 SUCCESS, /**< Success */
 REGISTRATION_IN_PROGRESS, /**< Failed due to registration in progress */
 NO_VALID_REGISTRATION, /**< Failed due to no valid registration */
 UNKNOWN_ERROR /**< Failed with unknown error */
 };

 /**
 * @name ServiceAvailabilityType
 * @brief Indicates service availability state
 */
 enum ServiceAvailabilityType

 {

 BROADCAST_AVAILABLE, /**< Service is available */
 BROADCAST_UNAVAILABLE /**< Service is unavailable */
 };

 /**
 * @name RegResponseCode
 * @brief Indicates app registration response
 */
 enum RegResponseCode

 {

 REGISTER_SUCCESS, /**< Registration was successful */
 FAILED_LTE_EMBMS_SERVICE_UNAVAILABLE /**< Registration failed because LTE eMBMS is unavailable on device */
 };

};

3.5 DASH-over-MBMS Streaming Service API
3.5.1 DASH-over-MBMS Streaming Use Cases and Message Flows

3.5.1.1 Application Registration:

[image: image10.emf]MBMS Aware

Application

MBMS Client BM-SC

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

deregisterStreamingApp()

getStreamingServices()

registerStreamingResponse()

 Figure 6 Application Registration sequence diagram
Application calls a register() API to register for consuming DASH services. At registration the application provides its implementation of the DASH service callback listener. DASH streaming service will provide async callbacks and unsolicited notification to the application via the callback listener.
As a result of registration, the MBMS client will start periodic monitoring and download of service announcement over the broadcast channel and caches the state.

Once registered, application may start making calls on the DASH service interface. For example, application may request retrieval of the eMBMS DASH service list. The getDASHServices() interface returns the complete list of available DASH services information, including service_id, service name, lang, mpd, etc.
When application is no longer interested in consuming streaming services, it calls deregisterStreamingApp() interface

3.5.1.2 Start DASH Streaming Service

[image: image11.emf]startStreamingService()

stopStreamingService()

MBMS Aware

Application

MBMS Client

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Multimedia

DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

Figure 7 Application starts DASH streaming services

After registration, the application may start making calls to DASH service interface. Application calls startDASHService(). This will initiate the download of the DASH segments over broadcast and prepare the DASH MPD. Once ready to provide service, MBMS Client will send a serviceStarted() Notification to the application via the registered callback listener. Upon receiving the serviceStarted, application may start playback of DASH on media player.

When application is no longer interested in consuming the DASH service, it calls the stopDASHService() interface, which will stop download of segments for the service over broadcast.
3.5.1.3 Notification callback

[image: image12.emf]MBMS Aware

Application

MBMS Client

BM-SC

getStreamingServices() Return list of DASH

services defined in

service announcement

Periodic Service Discovery(based on configuration parameter)

registerStreamingApp()

streamingServiceListUpdate()

registerStreamingResponse()

Figure 8 MBMS update notification to registered DASH application
At registration time, applications sets a callback event listener. MBMS client uses this interface to send callbacks and notifications of events to the application. For example, as the MBMS client periodically downloads service announcement updates, it sends a notification of serviceUpdatesAvailable() to the application to signal that the list of services previously retrieved is updated.

Note: The callback interface provides an efficient method to give instantaneous service updates to the application
3.5.2 DASH-over-MBMS Streaming Service IDL

#include "EmbmsCommonTypes.idl"
module StreamingService

{

 //Forward Declaration
 interface ILTEStreamingServiceCallback;

 /**
 * @name StreamingErrorCode
 * @brief List of the errors for streaming service
 */
 enum StreamingErrorCode

 {

 STREAMING_INVALID_SERVICE, /**< Invalid service ID */
 STREAMING_UNKNOWN_ERROR /**< Unknown error */
 };

 /**
 * @name StalledReasonCode
 * @brief List of the reasons for streaming service stalled notification
 */
 enum StalledReasonCode

 {

 RADIO_CONFLICT, /**< Radio frequency conflict */
 END_OF_SESSION, /**< End of session schedule */
 OUT_OF_COVERAGE, /**< Out of EMBMS coverage */
 OUT_OF_SERVICE, /**< Out of service */
 BEARER_UNAVAILABLE, /**< Bearer not available */
 STALLED_UNKNOWN_REASON /**< Unknown reason */
 };

 /**
 * @name RegisterStreamingAppData
 * @brief Streaming app registration information
 */
 struct RegisterStreamingAppData

 {

 string userId; /**< The user ID used during the registration */
 string appId; /**< The application ID used during the registration */
 any platformSpecificAppContext; /**< The platformSpecificAppContext is a
 placeholder for the platform-specific app context
 object which enables the API to get extra information
 about the application. The example for Android is
 Context class:
 https://developer.android.com/reference/android/content/Context.html */
 sequence<string> serviceClassList; /**< List of service classes */
 };

 /**
 * @name StreamingServiceClassList
 * @brief ServiceClass information which the app is interested in. It is for setStreamingServiceClassFilter API.
 */
 typedef sequence<string> StreamingServiceClassList;

 /**
 * @name ServiceNameLang
 * @brief Name and language information
 */
 struct ServiceNameLang

 {

 string name; /**< Name */
 string lang; /**< Language */
 };

 /**
 * @name StreamingServiceInfo
 * @brief Streaming service information
 */
 struct StreamingServiceInfo

 {

 sequence<ServiceNameLang> serviceNameList; /**< List of Service name and language */
 string serviceClass; /**< Service class */
 string serviceId; /**< Service ID */
 string serviceLanguage; /**< Service language */
 EmbmsCommonTypes::ServiceAvailabilityType serviceAvailability; /**< Service availability */
 string mpdUri; /**< MPD URI used by DASH player */
 EmbmsCommonTypes::Date activeDownloadPeriodStartTime; /**< The current/next active file download service start time, when files
 start being broadcast over the air */
 EmbmsCommonTypes::Date activeDownloadPeriodEndTime; /**< The current/next active file download service end time, when files
 stop being broadcast over the air */
 sequence<long> SAIList; /**< Servcie Area IDs based on current location of the device*/
 };

 /**
 * @name StreamingServices
 * @brief List of streaming service info objects
 */
 typedef sequence<StreamingServiceInfo> StreamingServices;

 /**
 * @name StartStreamingServiceData
 * @brief Start streaming service information. It is used by StartStreamingService API.
 */
 struct StartStreamingServiceData

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StopStreamingServiceData
 * @brief Stop streaming service information.
 * It is used by the StopStreamingService API.
 */
 struct StopStreamingServiceData

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 };

 /**
 * @name ServiceStartedNotification
 * @brief Streaming service started information. It is used by the ServiceStartedNotification API.
 */
 struct ServiceStartedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name ServiceStoppedNotification
 * @brief Streaming service stopped information. It is used by the ServiceStoppedNotification API.
 */
 struct ServiceStoppedNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 };

 /**
 * @name StreamingServiceErrorNotification
 * @brief Streaming service error information. It is used by the StreamingServiceErrorNotification API.
 */
 struct StreamingServiceErrorNotification

 {

 string serviceId; /**< Streaming service Id from StreamingServiceInfo */
 StreamingErrorCode err; /**< Streaming service error Id */
 };

 /**
 * @name ServiceStalledNotification
 * @brief Streaming service stalled information. It is used by the ServiceStalledNotification API.
 */
 struct ServiceStalledNotification

 {

 string serviceId; /**< Streaming service ID from StreamingServiceInfo */
 StalledReasonCode reason; /**< Streaming service stalled reason ID */
 };

 /**
 * @name RegisterStreamingResponseNotification
 * @brief Streaming app registeration response information
 */
 struct RegisterStreamingResponseNotification

 {

 EmbmsCommonTypes::RegResponseCode value; /**< Result of registeration value as defined in RegResponseCode */
 string message; /**< message described the result */
 };

 interface ILTEStreamingService

 {

 /**
 @name getVersion
 @brief Retrieves the version of the current Streaming service interface implementation
 @return Interface version
 **/
 string getVersion();

 /**
 @name registerStreamingApp
 @brief Application registers a callback listener with the EMBMS client
 @param[in] regInfo information required for application registration.
 @param[in] cb callback listener
 @see RegisterStreamingAppData
 @see registerStreamingResponse()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode registerStreamingApp(in RegisterStreamingAppData regInfo, in ILTEStreamingServiceCallback cb);

 /**
 @name deregisterStreamingApp
 @brief Application deregisters with the EMBMS client
 @pre Application calls register
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode deregisterStreamingApp();

 /**
 @name startStreamingService
 @brief Start download of segments of streaming service over broadcast
 @param[in] StartStreamingService Parameters for starting the streaming services API
 @pre Application is registered for streaming service
 @see StartStreamingServiceData
 @see serviceStarted()
 @see streamingServiceError()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode startStreamingService(in StartStreamingServiceData serviceInfo);

 /**
 @name stopStreamingService
 @brief Stop download of segments of Streaming service over broadcast
 @param[in] StopDASHService Parameters for starting the streaming services API
 @pre Application is registered for DASH service
 @see serviceStopped()
 @see StopStreamingServiceData
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode stopStreamingService(in StopStreamingServiceData serviceInfo);

 /**
 @name setStreamingServiceClassFilter
 @brief Application sets a filter on streaming services in which it is interested
 @param[in] serviceClassInfo List of service class filters requested by the application
 @pre Application is registered successfully with streaming service
 @see serviceUpdate()
 @see getStreamingServices()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode setStreamingServiceClassFilter(in StreamingServiceClassList serviceClassInfo);

 /**
 @name getStreamingServices
 @brief Retrieves the list of streaming services defined in the USD.
 List of services is filtered by the service class filter,
 if a filter has been set by the application.
 @param[out] StreamingServices List of filtered streaming services
 @pre Application is registered for streaming service and received streamingServiceListUpdate notification
 @see StreamingServices
 @see streamingServiceListUpdate()
 @return ResultCode
 **/
 EmbmsCommonTypes::ResultCode getStreamingServices(out StreamingServices services);

 };

 interface ILTEStreamingServiceCallback

 {

 /**
 @name registerStreamingResponse
 @brief The response to the application streaming service register API.
 @param Notification Parameters for registering a streaming response
 @pre Application called registerStreamingApp
 @see RegisterStreamingResponseNotification
 @see registerStreamingApp()
 **/
 void registerStreamingResponse(in RegisterStreamingResponseNotification info);

 /**
 @name serviceStarted
 @brief Notification to application that streaming service is started and
 media player may be initialized for playback
 @param Notification Parameters for service started notification.
 ServiceStartedNotification previously defined.
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStartedNotification
 **/
 void serviceStarted(in ServiceStartedNotification notification);

 /**
 @name serviceStopped
 @brief Notification to application that streaming service is stopped and
 media player may be stopped for playback
 @param Notification Parameters for service started notification
 @pre Application is registered for streaming service and called stopStreamingService
 @see ServiceStoppedNotification
 **/
 void serviceStopped(in ServiceStoppedNotification notification);

 /**
 @name streamingServiceError
 @brief Notification to application when there is an error with broadcast download of service
 @param Notification Parameters for service error notification
 @pre Application is registered for streaming service and called startStreamingService
 @see StreamingServiceErrorNotification
 **/
 void streamingServiceError(in StreamingServiceErrorNotification notification);

 /**
 @name serviceStalled
 @brief Notification to application when there is a temporary disruption of
 the broadcast download of service
 @param Notification Parameters for streaming service stalled notification
 @pre Application is registered for streaming service and called startStreamingService
 @see ServiceStalledNotification
 **/
 void serviceStalled(in ServiceStalledNotification notification);

 /**
 @name streamingServiceListUpdate
 @brief Notification to application on an update that is available for streaming services.
 Update may be due to the received USD or the network configuration.
 @pre Application is registered for streaming service.
 @post call getStreamingServices()
 **/
 void streamingServiceListUpdate();

 };

};

3.6 RTP-over-MBMS Streaming Service API
3.6.1 RTP-over-MBMS Streaming Use Cases and Message Flows

3.6.2 RTP-over-MBMS Streaming Service IDL

4 Proposal

It is proposed to add section 3 to TS26.347 clause 6 as service APIs.
[image: image13.png]

MBMS API

MBMS URL Handler

MBMS API

MBMS-Aware Application

MBMS-Aware Application

MBMS Client

MBMS Aware

Application 2

MBMS Aware

Application 1

�Expway: userId is not required, we agree to remove this parameter.

However, we think a device identifier should be added to uniquely identify the MBMS user in case of a remote architecture.

�Qualcomm: Let’s plan to discuss this for the 3GPP sumbmission.

�Editor’s Note: Need to define how we will be naming this service type so we are consistent throughout the document.

�Expway: the getFdAvailableFileList is an application API, right?

I think the arrow in not pointing to the correct direction.

�Qualcomm: You are correct. Updated now.

- 4/40 -

_1532773212.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533320360.vsd
startFdCapture()

fileDownloadFailure()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) but fail FEC decoding of file

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533370273.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533381068.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533127499.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1533236913.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522200.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525523943.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525523981.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525524015.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522245.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

_1525522162.vsd
startFdCapture()

fileAvailable()

MBMS Aware
Application

MBMS Client

Open FLUTE session
(local multicast join) and receive file(s) and perform FEC decode

stopFdCapture()

registerFdResponse()

registerStreamingResponse()

startStreamingService()

stopStreamingService()

MBMS Aware Application

MBMS Client

Open FLUTE session
(local multicast join) and receive segment file(s) and perform FEC decode

Multimedia
DASH Client

serviceStarted()

Start Playback (MPD url)

Close FLUTE session

Stop Playback

Get MPD/DASH Segments

