3GPP TSG-SA4 MBS SWG AH#61 telco
S4-AHI608
12th July, 2016
Agenda item:
4
Source:
Qualcomm Incorporated
Title:
Applications Services and Service APIs
Document for
Agreement
1 Introduction
This document summarizes agreements and contentious issues and provides a way forward for Application Service and Service APIs.
A pCR to address the inclusion of text to an updated version of the TR will be provided based in the agreements in this document.
2 Summary of Agreements

Prior and during SA4#89, a set of agreements have been made. Among those, it was agreed

· to have several APIs for different service types.

· To define specific DASH Streaming API
· To define at least one file delivery API

· Documentation style is agreed

· It is agreed to await the moving of the MBMS URL until the service APIs are complete.
3 Contentious Issues during SA4#89
3.1 Introduction

During SA4#89, the proponents of the service APIs progressed their understanding, but there were some contentious issues that need to be resolved before addressing the next steps in the API work.

Some issues and proposed resolutions are discussed in the following.

3.2 Application Service Type

We had been using terms such as “File Delivery”, “DASH Streaming”, “Generic App Delivery” or “Datacasting” to describe specific functionalities to be supported on API level. We believe this is unnecessarily ambiguous as these terms are associated by MBMS User Service Experts as implying specific functions to be used on the USD level, whereas for the API, it describes the methods used on API level, independent of the delivery.

To avoid this confusion, we propose

· to at least initially not associated names to Service APIs, but only differentiate by integer numbers.

· To describe and define the application service types and Service APIs as attached.

· To document typical USD settings for the application service APIs

· To leave the issue of signaling the type of the API to be used open for now.

Assume for the remainder of this documents that a service type is defined as type 1, 2, …

3.3 USD Attributes and Potential Changes

The USD as defined in TS26.346 currently has two means to describe the services
· The ServiceID attribute containing the unique MBMS User Service Identifier. Each userServiceDescription element shall have a unique identifier. The unique identifier shall be offered as serviceId attribute within the userServiceDescription element and shall be of URN format.
· The serviceClass attribute is optional and contains the service class identifier for the delivered service according to the syntax defined in clause E.1.2 of [90]. Note that Annex E of [90] also foresees the registration of service class identifiers with the Open Mobile Naming Authority. The service class identifier is similar to MIME types and provides an unique identity to services. A MBMS UE may determine the receiving application instance out of the service class identifier.

<?xml version="1.0" encoding="UTF-8"?>

<bundleDescription

xmlns="urn:3GPP:metadata:2005:MBMS:userServiceDescription"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:sv="urn:3gpp:metadata:2009:MBMS:schemaVersion"

xmlns:r7="urn:3GPP:metadata:2007:MBMS:userServiceDescription"

xmlns:r8="urn:3GPP:metadata:2008:MBMS:userServiceDescription"

xsi:schemaLocation="urn:3GPP:metadata:2005:MBMS:userServiceDescription

USD-schema-main.xsd">

<userServiceDescription serviceId="urn:3gpp:1234567890MobileTVChannelBundleCh1"
 r7:serviceClass="urn:oma:bcast:ext_bsc_3gpp:example_service:1.0">

<deliveryMethod
sessionDescriptionURI="http://www.example.com/3gpp/mbms/channel1.sdp">
<r8:alternativeAccessDelivery timeShiftingBuffer="3600">
<r8:unicastAccessURI>rtsp://www.example.com/3gpp/mbms/channel1_pss.sdp
</r8:unicastAccessURI>
</r8:alternativeAccessDelivery>

<sv:delimiter>0</sv:delimiter>

<sv:delimiter>0</sv:delimiter>

</deliveryMethod>

<sv:delimiter>0</sv:delimiter>

<sv:delimiter>0</sv:delimiter>

</userServiceDescription>

<sv:schemaVersion>2</sv:schemaVersion>

</bundleDescription>

The serviceID is associated to one USD/SDP and identifies one user transport service. However, the serviceID is not identifying the service APIs to be used. The serviceClass as used today describes a bundle of MBMS User service services that is used for filtering purposes on API level, but not describing the API to be used.
Based on this, there is no explicit way to describe which service APIs shall/should/may be used by the MBMS client to offer services to the application.

Preferably, a signalling should be provided as follows
· Service with serviceID can be offered as service type 1 and service type 2

· Service with serviceID can be offered as service type 2

· Etc.
There are several ways to move forward:

1. Signal through application, i.e. the serviceID is assigned to service type. However, then the app would have to inform how the service with a specific ID it to be offered

2. Implicit signalling through USD parameters: By the use of certain USD parameters, a service type may be implied. However, despite considered useful initially, it is not appropriate as the API level should be independent.

3. Reuse of serviceClass attribute. This may be suitable, but it is used differently in deployments and secondly, it does not allow to add multiple service types

4. Adding a new attribute to the USD defining the serviceType, which allows to signal they type to the app client.

5. Do not signal at all, it is a negotiation between the app and the MBMS client. It is not believed that this is viable as you need to negotiate for a service what type to be used instead of offering the service. Similar as for http delivery, both the app and the service know that the object to be delivered is accessible through http.

We strongly favour option 4 to move forward, but this was objected during the meeting without any concrete proposal for an alternative. It should be clarified what options exist. In the absence of options, we propose 4.

3.4 Specific vs. Generic APIs

We believe that APIs need to be fully defined and documented. For sufficient interoperability different aspects need to be defined. However, there was a consideration to enable a more generic set of APIs. While we do not disagree that different APIs can be defined, we should avoid to call an API “specific” or “generic”, but we should define all methods and details and if someone can use the API (from MBMS-aware application perspective) or implement the API (from an MBMS client point of view) is up to the deployments. We should avoid that the name implies functionalities.

We also believe that if no type is satisfactory for a service provider, SA4 can always define new types by regular extensions. One may also use a set of private APIs initially, if urgency is necessary, but the signaling for private API usage should be in place.

3.5 xMBMS started

It is also crucial that any discussion service types and APIs started in the feasibility study of xMBMS are either discussing the same functions or they are completely separated. We believe that as of now, they should be distinct, but the xMBMS signalling may include a definition on what service Type is to be used.

4 Application Services

4.1 Introduction

Following the above logic, we provide an overview of the application services which differentiate on API level.

4.2 Type 1 Application Service (File Delivery)
The API provides functions to the application for file delivery. Specifically the following functions are fulfilled:

· The application can select which new files to collect
· There will be APIs for apps to request which files to download and to request that download be stopped.
· Files can be requested as:
· A specific file defined by a URL

· A set of files, defined by a prefix

· All files that are distributed on the service
· For each file or each request, the application can set a registration validity/deadline until what time the MBMS client downloads files.

· Files are received even when app is not running
· For each file or each request, the application can set a registration validity/deadline until what time the MBMS client downloads files.

· If the deadline is short, then this means that the MBMS client basically only downloads whenever the app is running.

· Other conditions when the MBMS client stops downloading are currently not defined.
· There need to be recommendations to the developer to set the deadline to a reasonable time in order to avoid unnecessary downloads.
· received files are stored persistently (on app storage) and notified to the app.
· Apps optionally provide as part of the registration the storage location where captured files are to be stored
· The middleware/SDK will copy/move (method used depends on write access permission and local/remote relation on app-MBMS client interactions consideration) files to the app selected storage location
· Rationale: the MBMS Client is responsible for capturing transport file objects, apps ultimately own the files they request to be captured
· received files are notified to the app.
· The received file notifications includes the file name (fileURI from FDT), file location (where the file can be accessed locally), and an optional deadline
· If app storage is not specified, no copy done (access through HTTP server) and deadline is specified
· If copying/moving the file to the app storage fails, deadline is specified
· When the deadline is specified, the received files are under the MBMS Client control and the files will be deleted by the deadline.
· The file location specifies a file system location if the MBMS client has copied/moved the file to the app storage location or to a location where the app can have file system access to the file.
· The file location specifies an HTTP URL if the MBMS client did not copy/move the file to the app storage location or the app does not have file system access to where the file is stored.
· Application should support access to files via the file system and HTTP.
· Open Issue with HTTP: As soon as the app has downloaded the file, the file may removed from the cache. (no cache ?), However, how long a file is kept by the MBMS client should be done by the cache-control defined in the FDT and is independent of the
4.3 Type 2 Application Service (DASH Streaming)
In this case, the MBMS client offers a DASH Streaming Service to the application. The MBMS client modifies the MPD such that a regular DASH client can access the media segments available via broadcast as described in the MPD. These efforts may for example include:
· Apps passed MPD entry-point updated (from USD/CDN) to make bcast representations available from local cache (plus other changes),

· Media and Initialization Segments hosted via HTTP on MBMS client,

· files are received only when app is running (transient storage) with no notification,

· MBMS client uses for example MPD@timeShiftBufferDepth to age out old files,

· MBMS client uses USD info and SAND message to guide DASH client on representation selection.
The API should conform to a specific DASH profile on the message exchange.
4.4 Type 3 Application Service (RTP Streaming)

In this case, the MBMS client offers a regular RTP Streaming Service to the application. The MBMS client modifies the SDP such that a regular RTP streaming client can the RTP streams available via broadcast as described in the SDP. These efforts may for example include:
· FEC recovery
· Dejittering

· Bandwidth modifier adjustments
4.5 Type 4 Application Service (Entry-Point based file delivery)

In this case the entry-document is handed through the API. The entry-document defines exactly how the app can access the content. No change or adaptation is done to the entry point document is done. More details are tbd.

5 Proposal

It is proposed to:

· Apply the principles proposed in section 3, especially a solution for service type signalling

· Agree on the initial service types in section 4

- 1/6 -

