Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS SWG AHI#59 Telco
S4-AHI594
14th !june 2016

Source:
Expway

Title:
TRAPI: service API proposal
Document for
Discussion and Agreement

1 Introduction
This document describes a basis for Service APIs..

Mainly, the main improvement are:
· It removes create/destroy methods
2 Service API
2.2 Class interactions

This section provides an overview of the class interactions used in the 3GPP API:

[image: image1.png]
Figure 1: Class interactions
A full class hierarchy diagram can be found in Annex B of this document.
2.3 APIs
2.3.1.1 Registration/deregistration

The application must register to the eMBMS instance in order to be allowed to use the eMBMS features. This registration process is also needed to uniquely identify the application, and recognize it during its next run.
The registration operation is done by calling the registerEMBMSUser method of the IEMBMSControl interface. The required parameters are set in a registration information object that contains:
· A list of service class names: the service class names’ list is used to filter the services’ list return to the application. An empty list means the application wants to receive all the services without any filter applied.
· A list of service types: the application can filter the services’ list according to the service type. An empty list means the application wants to receive all the services without any filtering, otherwise, at least one of the provided type must match the service type.

· A device identifier: a software or hardware identifier that uniquely identifies the device.

· The application’s signature: the signature of the application must represent the application and shall not change at each application run or update.
· The user identifier: a unique identifier that represent the user of the eMBMS instance. This value is used to filter the different users of the eMBMS services in a single application.

When the application no longer uses eMBMS services it should deregister from the eMBMS instance by calling the deregisterEMBMSUser method of the IEMBMSControl interface.

[image: image2.png]
Figure 2: User registration/deregistration
2.3.1.2 Service List

The application can request for the available services’ list by calling the getAppicationServices method of the IEMBMSControl interface. This method is asynchronous.
The services’ list is filtered according to the filters configured at registration time.
The result of the operation is sent back to the application through the previously configured eMBMS Control listener.

The Services’ array contains different types of Services. At the moment only three types of Services are used:

· DASH Service

· File Service
· Streaming Service
· Generic Service
All the objects in the returned Services’ array are inherited from the abstract interface IEMBMSService. By requesting for the Service’s type (see getServiceInformation method) and casting the object to the appropriate type, the caller is able to access the specific members and method of the Service.

If the Service type is unknown to the application, it should simply ignore it. This kind of situation may happen if older version of this interface are used with newer implementation of the 3GPP APIs. Ignoring the unknown service types ensure the forward compatibility of this API.
[image: image3.png]
Figure 3: Get application Services

The application is informed that the Services list has changed when receiving the servicesArrayChanged event of the IMBMSControlListener interface; if needed, the application can perform a getAppicationServices call to retrieve the up to date Services’ list.
[image: image4.png]
Figure 4: Application Services update
2.3.2 Notification mechanism

In order to get the eMBMS Instance’s events, an EMBMS Control listener must be set to the eMBMS instance.

The eMBMS Control listener can be set by calling the setControlListener method of the IEMBMSControl interface. When done, the application starts receiving events about the eMBMS instance.

When no longer needed, the eMBMS Control listener can be removed by calling the removeControlListener method of the IEMBMSControl interface.
The EMBMS Control notifies the application about the following events:

· Services array modification: the application receives a servicesArrayChanged. The application is aware that the available services list has changed, and that it should perform a getAppicationServices call to retrieve the up to date services’ list if needed.

· Services’ list received: consequently to a getAppicationServices call, the application received the up to date services’ list.

· Services’ list error: consequently to a getAppicationServices call, the application is notified that an error occurred during the processing of the new services’ list.
[image: image5.png]
Figure 5: Control listener classes
[image: image6.png]
Figure 6: Control Notifications
2.3.3 Application Services
2.3.3.1 Access to the list of application service

The application can retrieve the array of available application Services by calling the getApplicationServices method of the IEMBMSControl interface. This method is asynchronous.
The Services’ array contains different types of Services. At the moment only three types of Services are used:
· DASH Service
· File Service

· Streaming Service

· Generic Service

If the Service type is unknown to the application, it should simply ignore it. This kind of situation may happen if older version of this interface are used with newer implementation of the 3GPP APIs. Ignoring the unknown service types ensure the forward compatibility of this API.
[image: image7.png]
Figure 7: Services hierarchy

2.3.3.2 Open

In order to open an eMBMS service, the open method of the IEMBMSService interface is called.

In case of a file Service, the application can choose to select a subset of the proposed files or download all the files of the Service:

· Selected files: the application calls the selectFile method of the IEMBMSService interface for each desired file prior to call the open method of the IEMBMSService interface. When a file is no longer desired, the application calls the unselectFile method of the IEMBMSService interface prior to call the open method of the IEMBMSService interface.
· All files: the application does not select any file in the Service’s file list (default status of a file is “not selected”). If no file is selected when the open method of the IEMBMSService interface is called, all the files of the Service are received.

An opened File Service continues to be received until the Service’s end time is reached or until the application calls the close method of the IEMBMSService interface.
An application is then allowed to open a File Service and leave (process stops). At its next run, the application should check for the files cached in the meantime, and open the File Service if it wants to receive more files of the File Service.
[image: image8.png]
Figure 8: DASH Service Opening
[image: image9.png]
Figure 9: File Service Opening

[image: image10.png]
Figure 10: Streaming Service Opening
2.3.3.3 Close

The application can close a Service by calling the close method of the IEMBMSService interface.
When a Service is closed EMBMS data stops being received and all internal operations are aborted. After the serviceClosedSuccess or serviceClosedFail event is received, the application no longer receives events concerning the closed Service.

[image: image11.png]
Figure 11: Service Closing

2.3.3.4 Services Notifications

In order to get the EMBMS Service’s events, a Service listener must be set to each opened Service. According to the desired notifications, the application provides a Service listener that implements one of the following interface:

· IEMBMSDASHServiceListener (abstract): this non instantiable class is used as the common parent to all the Service listener. It defines the minimal events that could be triggered for all the Services regardless of their types. The possible events are:

· serviceOpenedSuccess: the service has successfully been opened.

· serviceOpenedFail: the Service failed to be opened.
· serviceClosedSuccess: the Service has successfully been closed.
· serviceClosedFail: the Service failed to be closed.
· IEMBMSDASHServiceListener: this interface is designed for DASH Services. The received events are:

· mpdUpdate: this event is triggered if a MPD update occurred.
· IEMBMSStreamingServiceListener: this interface is designed for streaming Services. The received events are:

· sdpUpdate: this event is triggered if a SDP update occurred.

· IEMBMSFileServiceListener: this interface is designed for File Services. The received events are:

· fileCached: this event is triggered when a new file has successfully been received and added to the cache.

· fileFail: the File failed to be received.

· IEMBMSGenericServiceListener: this interface implements all the other interface. This kind of Service listener is then able to receive any kind of Service events.
[image: image12.png]
Figure 12: Service listeners hierarchy

The Service listener can be set by calling the setServiceListener method of the IEMBMSService interface. Once done, the application will only receive events about the Services it has opened.

When no longer needed, the Service listener can be removed by calling the removeServiceListener method of the IEMBMSService interface.
[image: image13.png]
Figure 13: Service Notifications
2.3.3.5 Access to Application service Information

The application can get information about the Service by calling the getServiceInformation method of the IEMBMSService interface. This method provides the following information:

· The service type: at the moment the possible Service types are DASH, Streaming, File, generic, unknown.

· The service class array: array of service classes defined for this service.

· Start date: the time from which the Service starts being available.

· End date: the time from which the Service stops being available.

· Service names array: an array of name/languages pair that inform the application about the different names of the Service in different languages.

[image: image14.png]
Figure 14: Service Information

For a File Service, the application can get the array of available files in the Service by calling the getDownloadableFilesArray method of the IEMBMSFileService interface. This array contains all the files that can be downloaded for this Service at getDownloadableFilesArray calling time. When a file of a File Service is received it is added to the cache of the eMBMS instance, waiting for the application to fetch it.

For a File Service, the application can get the array of already cached files in the Service by calling the getCachedFilesArray method of the IEMBMSFileService interface. This array contains all the files ready to be fetched by the application. Every time a new file is received it is cached by the eMBMS Instance, and its information are added to the cached files array.

[image: image15.png]
Figure 15: Cached files array

The application get the entry point of the Service by calling the getEntryPoint method of the IEMBMSService interface. The entry point is a string used by the application to access to the Service. Depending on the Service type, the returned value may be:
· DASH Servcie: the MPD URL. getEntryPoint is here equivalent to the getMpdUrl method of the IEMBMSDASHService interface.

· Streaming Service: the SDP URL. getEntryPoint is here equivalent to the getSdpUrl method of the IEMBMSStreamingService interface.

· File Service: NULL.
· Generic Service: for generic Services, the entry point’s semantic depends on the concrete Service type that represents the generic Service. In this case, the application knows the meaning of the entry point string.

2.4 Status codes

The 3GPP API proposal defines some status values to handle as many status as possible. The status list should probably be extended to cover all the possible use cases. At the moment the identified statuses are:
· r_ok

Success status
· r_errorParameters

Bad parameters

· r_errorMemory

A memory allocation failed
· r_errorFileSystem

The space on the file system is not enough
· r_warninfNotFound

The requested data can’t be found

· r_warninNotRegistered

Application not registered
3 Conclusion
As a conclusion, it is proposed to agree:

· Use part 3 as basis for API
ANNEX A

EMBMSManagement.idl
/**

 * @file EMBMSManagement.idl

 * @brief EMBMS 3GPP API definition

 *

 * This file defines the 3GPP API for

 * eMBMS interface.

 */

/**

 * @defgroup EMBMS3gppApi EMBMS 3gpp API

 * @brief Definition of 3GPP eMBMS APIs

 *

 * @{

 **/

module EMBMS3gppApi

{

 // Forward declaration

 abstract interface IEMBMSService;

 /**

 * @defgroup EMBMSTypes eMBMS Types

 * @ingroup EMBMS3gppApi

 * @brief Definition of 3GPP eMBMS Types

 *

 * @{

 **/

 /**

 * @name EResultCode

 * @brief List of return status.

 */

 enum EResultCode

 {

 r_ok, /**< Success */

 r_errorParameters, /**< Error of parameter in the function */

 r_errorMemory, /**< An allocation failed */

 r_errorFileSystem, /**< The space on the file system is not enough */

 r_warninfNotFound, /**< Data service not found */

 r_warninNotRegistered /**< Application not registered */

 };

 /**

 * @name EOpenFailCause

 * @brief List of Service open failure cause.

 */

 enum EOpenFailCause

 {

 of_alreadyOpened, /**< The service is already opened. */

 of_hardwareError, /**< An hardware error prevent the service from being opened. */

 of_outOfCoverage, /**< Out of MBMS coverage. */

 of_serviceRemoved /**< The requested service is no longer available. */

 };

 /**

 * @name ECloseFailCause

 * @brief List of Service close failure cause.

 */

 enum ECloseFailCause

 {

 cf_notOpened, /**< The service is not opened. */

 cf_hardwareError /**< An hardware error prevent the service from being closed. */

 };

 /**

 * @name EFileFailCause

 * @brief List of file failure cause.

 */

 enum EFileFailCause

 {

 ff_serviceRemoved, /**< The requested service is no longer available. */

 ff_fileRemoved, /**< The requested file is no longer available. */

 ff_outOfCoverage /**< Out of MBMS coverage. */

 };

 /**

 * @name EServicesErrorCause

 * @brief List of Services error cause.

 */

 enum EServicesErrorCause

 {

 se_noData, /**< No available data. */

 se_outOfCoverage /**< Out of MBMS coverage. */

 };

 /**

 * @name EServiceType

 * @brief List of Service types.

 */

 enum EServiceType

 {

 st_DASH, /**< DASH servcie type. */

 st_File, /**< File service type. */

 st_Streaming, /**< Streaming service type. */

 st_Unknown /**< Unknown service type. */

 };

 /**

 * @name ServiceNameLang

 * @brief Service Name/Language information.

 */

 struct ServiceNameLang

 {

 string name; /**< The service name */

 string lang; /**< The name's language */

 };

 /**

 * @name ContentInformation

 * @brief Content information used to identify and fetch the content.

 */

 struct ContentInformation

 {

 string contentURI; /**< The content URI */

 string contentLocalURL; /**< The content local URL used to fetch the content */

 };

 /**

 * @name Date

 * @brief Date information expressed as milliseconds since the epoch.

 */

 typedef unsigned long long Date;

 /**

 * @name ServicesArray

 * @brief Array of Services.

 */

 typedef sequence<IEMBMSService> ServicesArray;

 /**

 * @name ServiceClassArray

 * @brief Array of Service Classes.

 */

 typedef sequence<string> ServiceClassArray;

 /**

 * @name FileArray

 * @brief Array of File information.

 */

 typedef sequence<ContentInformation> FileArray;

 /**

 * @name serviceNameList

 * @brief Array of Name/Language information.

 */

 typedef sequence<ServiceNameLang> ServiceNameArray;

 /**

 * @name ServiceTypeFilter

 * @brief Array of Services types.

 */

 typedef sequence<EServiceType> ServiceTypeFilter;

 /*@}*/ // EMBMSTypes

 /**

 * @defgroup groupSEvents EMBMS Service Events

 * @ingroup EMBMS3gppApi

 * @brief Service events (asynchronous methods).

 *

 * This interface is used by the application to receive

 * notifications during Service process.

 *

 * @{

 **/

 /**

 * @name IEMBMSServiceEvent

 * @brief Service event object.

 */

 interface IEMBMSServiceEvent

 {

 /**

 * @name getService

 * @brief Get the Service object.

 * @return The Service object on success, NULL otherwise.

 */

 IEMBMSService getService();

 };

 /**

 * @name IEMBMSServiceOpenFailEvent

 * @brief Service open fail event object.

 */

 interface IEMBMSServiceOpenFailEvent : IEMBMSServiceEvent

 {

 /**

 * @name getCause

 * @brief Get the open failure cause.

 * @return The failure cause (see IEMBMSApi#EOpenFailCause).

 */

 EOpenFailCause getCause();

 };

 /**

 * @name IEMBMSServiceCloseFailEvent

 * @brief Service close fail event object.

 */

 interface IEMBMSServiceCloseFailEvent : IEMBMSServiceEvent

 {

 /**

 * @name getCause

 * @brief Get the close failure cause.

 * @return The failure cause (see IEMBMSApi#ECloseFailCause).

 */

 ECloseFailCause getCause();

 };

 /**

 * @name IEMBMSFileEvent

 * @brief File event object.

 */

 interface IEMBMSFileEvent : IEMBMSServiceEvent

 {

 /**

 * @name getFileInformation

 * @brief Get the file information.

 * @return The file information on success, NULL otherwise.

 */

 ContentInformation getFileInformation();

 };

 /**

 * @name IEMBMSFileCachedEvent

 * @brief File cached event object.

 */

 interface IEMBMSFileCachedEvent : IEMBMSFileEvent

 {};

 /**

 * @name IEMBMSFileFailEvent

 * @brief File fail event object.

 */

 interface IEMBMSFileFailEvent : IEMBMSFileEvent

 {

 /**

 * @name getCause

 * @brief Get the file failure cause.

 * @return The file failure cause (see IEMBMSApi#EFileFailCause).

 */

 EFileFailCause getCause();

 };

 /**

 * @name IEMBMSServiceListener

 * @brief Service event listener.

 */

 abstract interface IEMBMSServiceListener

 {

 /**

 * @name serviceOpenedSuccess

 * @brief The Service has successfully been opened.

 * @param[in] event The event

 */

 void serviceOpenedSuccess(in IEMBMSServiceEvent event);

 /**

 * @name serviceOpenedFail

 * @brief The Service failed to be opened.

 * @param[in] event The event

 */

 void serviceOpenedFail(in IEMBMSServiceOpenFailEvent event);

 /**

 * @name serviceClosedSuccess

 * @brief The Service has successfully been closed.

 * @param[in] event The event

 */

 void serviceClosedSuccess(in IEMBMSServiceEvent event);

 /**

 * @name serviceClosedFail

 * @brief The Service failed to be closed.

 * @param[in] event The event

 */

 void serviceClosedFail(in IEMBMSServiceCloseFailEvent event);

 };

 /**

 * @name IEMBMSDASHServiceListener

 * @brief DASH Service event listener.

 */

 interface IEMBMSDASHServiceListener : IEMBMSServiceListener

 {

 /**

 * @name mpdUpdate

 * @brief The DASH Service's MPD has been updated.

 * @param[in] event The event

 */

 void mpdUpdate(in IEMBMSServiceEvent event);

 };

 /**

 * @name IEMBMSStreamingServiceListener

 * @brief Streaming Service event listener.

 */

 interface IEMBMSStreamingServiceListener : IEMBMSServiceListener

 {

 /**

 * @name sdpUdpate

 * @brief The Streaming Service's SDP has been updated.

 * @param[in] event The event

 */

 void sdpUdpate(in IEMBMSServiceEvent event);

 };

 /**

 * @name IEMBMSFileServiceListener

 * @brief File Service event listener.

 */

 interface IEMBMSFileServiceListener : IEMBMSServiceListener

 {

 /**

 * @name fileCached

 * @brief A new File has successfully been cached.

 * @param[in] event The event

 */

 void fileCached(in IEMBMSFileCachedEvent event);

 /**

 * @name fileFail

 * @brief The File failed to be received.

 * @param[in] event The event

 */

 void fileFail(in IEMBMSFileFailEvent event);

 };

 interface IEMBMSGenericServiceListener : IEMBMSDASHServiceListener, IEMBMSFileServiceListener, IEMBMSStreamingServiceListener

 {

 };

 /*@}*/ // groupSEvents

 /**

 * @defgroup EMBMSService eMBMS Service

 * @ingroup EMBMS3gppApi

 * @brief Definition of 3GPP eMBMS Service APIs

 *

 * @{

 **/

 /**

 * @name IEMBMSService

 * @brief Service object.

 */

 struct ServiceInformation

 {

 EServiceType type; /**< The service type */

 ServiceClassArray serviceClasses; /**< The service class array */

 Date startDate; /**< The service start time */

 Date endDate; /**< The service end time */

 ServiceNameArray serviceNames; /**< The service names */

 };

 /**

 * @name IEMBMSService

 * @brief Service object.

 */

 abstract interface IEMBMSService

 {

 /**

 * @name open

 * @brief Open a Service.

 * @return A status code from IEMBMSApiIEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode open();

 /**

 * @name close

 * @brief Close a Service.

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode close();

 /**

 * @name setServiceListener

 * @brief Set the Service listener.

 *

 * If a Service listener was previously set, the new Service

 * listener replaces the old one.

 * To remove the Service listener see IEMBMSService#removeServiceListener.

 * @param[in] serviceListener The Service listener to set

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 */

 EResultCode setServiceListener(in IEMBMSServiceListener serviceListener);

 /**

 * @name removeServiceListener

 * @brief Remove the Service listener.

 *

 * To set the Service listener see IEMBMSService#setServiceListener.

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 */

 EResultCode removeServiceListener();

 /**

 * @name getServiceInformation

 * @brief Get the Service's information.

 * @return The service's information on success, NULL otherwise.

 */

 ServiceInformation getServiceInformation();

 /**

 * @name getEntryPoint

 * @brief Get the Service's entry point.

 * @return The service's entry point on success, NULL otherwise.

 */

 string getEntryPoint();

 };

 /**

 * @name IEMBMSDASHService

 * @brief DASH Service object.

 */

 interface IEMBMSDASHService : IEMBMSService

 {

 /**

 * @name getMpdUrl

 * @brief Get the MPD URL of the DASH Service.

 * @return The MPD URL of the DASH Service on success, NULL otherwise.

 */

 string getMpdUrl();

 };

 /**

 * @name IEMBMSFileService

 * @brief File Service object.

 */

 interface IEMBMSFileService : IEMBMSService

 {

 /**

 * @name getDownloadableFileArray

 * @brief Get the array of downloadable files.

 * @return The array of downloadable files on success, NULL otherwise.

 */

 FileArray getDownloadableFilesArray();

 /**

 * @name getCachedFilesArray

 * @brief Get the array of cached files.

 * @return The array of cached files on success, NULL otherwise.

 */

 FileArray getCachedFilesArray();

 /**

 * @name selectFile

 * @brief Select a file within the Service.

 *

 * A file must be selected to be received.

 * The file must be selected by calling this function prior to call the

 * IEMBMSService#Open method. If no file is selected, all the file of the

 * Service are received.

 * @pre Get the downloadable files array (see IEMBMSFileService#getDownloadableFilesArray).

 * @post Call IEMBMSService#open to start the reception of the selected file URIs.

 * @param[in] fileURI The file URI to select

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode selectFile(in string fileURI);

 /**

 * @name unselectFile

 * @brief Unselect a file within the Service.

 *

 * A file must be unselected to stop being received.

 * The file must be unselected by calling this function prior

 * to call the IEMBMSService#open method.

 * @pre Get the downloadable files array (see IEMBMSFileService#getDownloadableFilesArray).

 * @post Call IEMBMSService#open to stop the reception of the unselected file URIs.

 * @param[in] fileURI The file URI to unselect

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode unselectFile(in string fileURI);

 };

 /**

 * @name IEMBMSStreamingService

 * @brief Streaming Service object.

 */

 interface IEMBMSStreamingService : IEMBMSService

 {

 /**

 * @name getSdpUrl

 * @brief Get the SDP URL of the streaming Service.

 * @return The SDP URL of the streaming Service on success, NULL otherwise.

 */

 string getSdpUrl();

 };

 /**

 * @name IEMBMSGenericService

 * @brief Generic Service object.

 */

 interface IEMBMSGenericService : IEMBMSDASHService, IEMBMSFileService, IEMBMSStreamingService

 {

 };

 /*@}*/ // EMBMSService

 /**

 * @defgroup EMBMSManagement eMBMS Management

 * @ingroup EMBMS3gppApi

 * @brief Definition of 3GPP eMBMS Management APIs

 *

 * @{

 **/

 /**

 * @name IEMBMSServicesArrayErrorEvent

 * @brief Services array error object.

 */

 interface IEMBMSServicesArrayErrorEvent

 {

 /**

 * @name getCause

 * @brief Get the services array error cause.

 * @return The services array error cause (see IEMBMSApi#EServicesErrorCause).

 */

 EServicesErrorCause getCause();

 };

 /**

 * @name IEMBMSControlListener

 * @brief EMBMS Control event listener.

 */

 interface IEMBMSControlListener

 {

 /**

 * @name servicesArrayChanged

 * @brief The Services' array changed.

 */

 void servicesArrayChanged();

 /**

 * @name servicesArray

 * @brief The requested Services' array.

 * @param[in] servicesArray The Service's array

 * @param[in] nbServices The number of elements in servicesArray

 */

 void servicesArray(in ServicesArray servicesArray, in unsigned long nbServices);

 /**

 * @name servicesArrayError

 * @brief The Services' array failed to be received.

 * @param[in] event The event

 */

 void servicesArrayError(in IEMBMSServicesArrayErrorEvent event);

 };

 /**

 * @name RegistrationInformation

 * @brief EMBMS Registration Information object.

 */

 struct RegistrationInformation

 {

 ServiceTypeFilter serviceTypeFilter; /**< Filter on service type. Empty array for disable filtering on service type */

 ServiceClassArray serviceClassArray; /**< The service Class array. Empty array for disable filtering on service class */

 string deviceId; /**< The device unique identifier */

 string applicationSignature; /**< The application signature */

 string userId; /**< The unique user identifier */

 };

 /**

 * @name IEMBMSControl

 * @brief EMBMS Control object.

 */

 interface IEMBMSControl

 {

 /**

 * @name registerEMBMSUser

 * @brief Register an EMBMS instance user.

 *

 * @param[in] registrationInformation The registration information

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 */

 EResultCode registerEMBMSUser(in RegistrationInformation registrationInformation);

 /**

 * @name deregisterEMBMSUser

 * @brief Deregister an EMBMS instance user.

 *

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode deregisterEMBMSUser();

 /**

 * @name setControlListener

 * @brief Set the EMBMS control listener.

 *

 * If a EMBMS Control listener was previously set, the new EMBMS Control

 * listener replaces the old one.

 * To remove the EMBMS Control listener see IEMBMSControl#removeControlListener.

 * @param[in] controlListener The EMBMS Control listener to set

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 */

 EResultCode setControlListener(in IEMBMSControlListener controlListener);

 /**

 * @name removeControlListener

 * @brief Remove the EMBMS Control listener.

 *

 * To set the EMBMS Control listener see IEMBMSControl#setControlListener.

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 */

 EResultCode removeControlListener();

 /**

 * @name getAppicationServices

 * @brief Get the available EMBMS Services' array.

 *

 * The services' array is filter according to the provided service classes.

 * The services' array is asynchronously returned to the application through

 * the EMBMS3gppApi#IEMBMSControlListener listener.

 * @pre Set a EMBMS Control listener by calling IEMBMSControl#setControlListener.

 * @return A status code from IEMBMSApi#EResultCode

 * - r_ok

 * - r_errorParameters

 * - r_warningNotFound

 * - r_warninNotRegistered

 */

 EResultCode getAppicationServices();

 };

 /*@}*/ // EMBMSManagement

};

/*@}*/ // EMBMS3gppApi
ANNEX B
EMBMS API Class hierarchy:
[image: image16.png][image: image17.png]
- 21/25 -

