3GPP TSG-SA4 MBS SWG AH#55 telco 
S4-AHI562
3rd May, 2016
revision of S4-AHI558
Agenda item: 
4
Source: 
Qualcomm Incorporated
Title: 
TRAPI: Updates to Service APIs
Document for
Agreement
1 Introduction
This document provides additional discussions on Service APIs based on the initial agreements in S4-150499 during SA4#88.
2 Service API

2.1 Assumptions and Options
In order to address details on the Service API definitions, some additional aspects are discussed.
At first it is assumed that both, the MBMS-aware Application as well as the MBMS client know service type as defined in section 4.3 in TS26.347.
Two different approaches may be considered
1) generic API parameterized by ServiceType, or 

2) ServiceType specific APIs

To evaluate the different approaches we need to consider

· Complexity of SDK and App Implementation

· Extensibility considerations

· Impact of SDK implementation in different deployment scenarios

In order to fully understand this issue, we need to agree on the set of method/functions and notifications needed by each ServiceType. An evaluation of the impact of supporting these against the consideration list above is necessary.
2.2 Option 1: Common APIs


[image: image4.png]
Having Common Service APIs
· Adds complexity to app developers’ efforts targeting a specific ServiceType

· Though apps in recent deployments are streaming apps and file delivery apps, the app developer needs to

· Understand all the APIs (functions/notification) and which are applicable to the type of service of interest
· Extensibility: does not avoid the need for adding new functions/notification types of future services
· Hybrid service Types (streaming/FD, e.g. sportscasting with separate FLUTE for streaming and FD content)
· Feasibility of the SDK implementation does not enable a modular implementation approach to support resource constraint deployments – single monolithic SDK
2.3 Option 2: API Set per Service Type


[image: image2]
Individual APIs for each Service Type provide the following benefits.
· Aligns with the service types defined in 3GPP

· Simplifies app developers’ efforts targeting a specific ServiceType

· Apps in recent deployments are streaming apps and file delivery apps

· Extensibility: new services may need new functions/notification types, so defining new application services is most suitable.
· Hybrid service Types (streaming/FD, e.g. sportscasting with separate FLUTE for streaming and FD content)

· Feasibility of theSDK/API implementation enables modular implementation approach to support resource constraint deployments

· Simpler to develop different SDKs that support ServiceType specific deployments of specialized devices 

· If SDK only includes FD SericeType support, a compact ServiceType-specific SDK can be bundled with the application resulting in smaller memory footprint
3 Service API calls

3.1 File delivery APIs
	Separate APIs
	Common APIs

	Create/deleteAppInstanceId
	Create/deleteAppInstanceId

	Register/Deregister
	Register/Deregister

	
	Identifies app (appID), backgroundTTL, register call back functions, reportFDProgress, etc.
	
	Identifies app (appID), register call back functions 

commonNotification (type, params), but for FD services only

	
	
	fileAvailable(receivedFileURL) – notifies of newly received file for a service
	
	
	Type: fileAvailable: Part of params struct – identifies newly received file for a service

	
	
	fileDownloadFailure(failedFileURL) – notifies of failure to download a file for a service
	
	
	Type: fileDownloadFailure Part of params struct – identifies file that failed to be downloaded for a service

	
	
	insufficientStorage() – signal to alert the user to make storage space to receive files
	
	
	Type: insufficientStorage

	
	
	fileDownloadState () – indicates whether the file is pending reception, in download, pending repair, etc.
	
	
	Type: fileDownloadState

	
	
	fileDownloadProgress (?)
	
	
	Type: fileDownloadProgress

	
	
	serviceUpdatesAvailable(?)
	
	
	

	getFileDeliveryServices – provides info on available FD services
	getServices (serviceType)

	
	serviceName, serviceClass, serviceID, serviceAvailability, fileURIs, serviceStart/End
	
	For FD services, includes fileURIs

	startCapture
	startCapture

	
	Identifies file(s) to be captured on a specific FD service
	
	Identifies file(s) to be captured on a specific FD service

	stopCapture
	stopCapture

	
	Aborts capture of previously identified file(s) on a FD service
	
	Aborts capture of previously identified file(s) on a FD service

	deleteFile()
	deleteFile()


3.2 DASH Streaming
	Separate APIs
	Common APIs

	Create/deleteAppInstanceId
	Create/deleteAppInstanceId

	Register/Deregister
	Register/Deregister

	
	Identifies app (appID), register call back functions
	
	Identifies app (appID), register call back functions 

commonNotification (type, params), but for DASH services only

	
	
	DashServiceStarted(?) – signals that playback can start
	
	
	Type: DashServiceStarted Part of params struct – identifies the service

	
	
	DashServiceStopped(?) – signals that playback can stop
	
	
	Type: DashServiceStopped

Part of params struct – identifies the service

	
	
	DashServiceStalled() – signals that service is consumed via unicast (MooD/service continuity)
	
	
	Type: DashServiceStalled

Part of params struct – identifies the service

	
	
	DashServiceUpdatesAvailable(?)
	
	
	Type: DashServiceUpdatesAvailable

	getDASHServices – provides info on available DASH services
	getServices (serviceType=DASHStreaming)

	
	serviceName, serviceClass, serviceID, serviceAvailability, mpdURI, serviceStart/End
	
	For DASH services, includes mpdURI

	startDASHService
	startDASHService

	
	Identifies service to be started
	
	Identifies file(s) to be captured on a specific FD service

	stopDASHService
	stopDASHService

	
	Identifies the service to be stopped
	
	Aborts capture of previously identified file(s) on a FD service

	switchDASHService
	switchDASHService

	
	Identifies the service to be switched
	
	Aborts capture of previously identified file(s) on a FD service


4 Proposal

Based on the information in section 2 and 3, the potential “simplicity” of common APIs does not warrant any implementation complexity. Therefore, we propose to define the APIs for each service individually.
- 1/4 -

[image: image1][image: image3.png]