Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS SWG AHI#52 Telco
S4-AHI537
9th March, 2016

Agenda item:
4
Source:
Qualcomm Incorporated

Title:
Service API – Proposed Specification and Documentation Methodology
Document for
Discussion and Agreement
1 Introduction
In an updated work item description in S4-160250, the MBMS transport Protocol and API (TRAPI) WI is defined. The relevance for proper documentation of the service APIs was considered essential before starting actual specification work. Based on this relevance a Telco on TRAPI on Service API is setup with exclusive focus on

· Formalized Description language for Service APIs

· Stage-3 Documentation options for Service APIs

· Specification objectives for Service APIs

This document addresses the above issues and provides concrete proposals on the way forward.
2 Motivation and Background
The work item description in S4-160250 contains concrete objectives on the definition of service APIs as follows:

· Define service APIs and user plane APIs to directly access resources delivered through MBMS User Services taking into account
· as minimum the use cases of DASH-based streaming delivery, generic application services as well as file download services. Support for the streaming delivery method should also be considered. Support for the Group Communication method is currently out of scope.

· specification in sufficient details to enable interoperable implementations.
· …
· Commonalities between service APIs and the transport protocol should be considered.
3GPP has very little history on API definitions, but we believe it will add significant value if 3GPP can establish documentation of APIs for 3GPP-centric services. APIs provide the ability to abstract service functionalities for app developers and create innovative apps around well-established 3GPP services.
APIs are for developers, and therefore it is relevant that the specification is written in a way such that developers can read, understand and make use of them. We cannot expect that developers will learn 3GPP standardization languages, we believe that 3GPP should document APIs in a way as developers are used to.

In the absence of concrete rules, we found this Technical Note http://www.sei.cmu.edu/reports/02tn015.pdf quite useful, despite dating back more than a decade.
A couple of relevant aspects from the Technical Note are summarized:

· What is an interface? An interface is a boundary across which two independent entities meet and interact or communicate with each other.

· What is a signature? A signature deals with the syntactic part of documenting an interface. When an interface’s resources are invokable procedures, each comes with a signature that names the procedure and defines its parameters. Parameters are defined by giving their order, data type, and, sometimes, whether their value is changed by the procedure. A procedure’s signature is the information that you would find about it, for instance, in the element’s C or C++ header file.

· What is an API? An API, or application programming interface, is a vaguely defined term but typically it assembles a collection of signatures. An API for an element/function is usually written to serve developers who use that element.
· What is an interface specification: An interface specification is a statement of what an architect chooses to make known about an element/function in order for other entities to interact or communicate with it. For more details refer to the Tech Note, section 4. We recommend to use the guidelines in section 4 when we document the API.

· A standard organization is provided for an Interface Documentation in section 5:

· Interface identity: When an element has multiple interfaces, identify each one to distinguish them from one another. In some cases, merely naming an interface is not sufficient, and the version of the interface must be specified as well. For example, in a framework with named interfaces that has evolved over time, it could be very important to know whether you mean the V1.2 or V3.0 persistence interface.

· Resources provided

· Resource syntax: resource’s signature, which includes any information that another program will need to write a syntactically correct program that uses the resource. The signature includes the name of the resource, the names and logical data types of arguments, if any, and so forth

· Resource semantics: provides the result of invoking a resource

· Resource usage restrictions: circumstances under what may this resource be used, e.g.

· Locally defined data types

· Error handling

· Variability provided

· Quality attribute characteristics

· What the element/function requires

· Rationale and design issues

· Usage guide

· The document also discusses Stakeholders of the interface definition, who each may have different needs and expectations. Some stakeholders to kept in mind are listed in section 6:

· Builder of an element/function

· Tester of an element/function

· Developer using an element/function

· Analyst, for example for performance

· System builder:

· Integrator

· Etc.

· Notation (see section 7)

· Notation for Showing the Existence of Interfaces

· Elements/Functions, Interaction, Interface

· Notations for Conveying Syntactic Information:

· Object Management Group’s (OMG’s) interface definition language, IDL, provides language constructs to describe data types, operations, attributes, and exceptions. The only language support for semantic information is a comment mechanism.

· Notations for Conveying Semantic Information

· Semantic information often includes the behavior of an element or one or more of its resources.

· Typically. natural language is the most widespread notation for conveying semantic information

· A good summary is provided:

· No single notation adequately documents interfaces; practitioners must use a combination of notations.

· When showing the existence of interfaces in the views’ primary presentations, use the graphical notation of choice.

· Use one of the syntactic notations to document the syntactic portion of an interface’s specification.

· Use natural language, Boolean algebra for preconditions and postconditions, or any of the behavior languages to convey semantic information.

· Document patterns of usage, or protocols, as rich connectors, or show usage scenarios accompanied by examples of how to use the element’s resources to carry out each scenario.

· The document provides several options for documentation of interfaces. As an example, the use of IDL is discussed

· syntax is specified unambiguously in this type of documentation,

· semantic information is largely missing. IDL by itself is inadequate when it comes to fully documenting an interface, primarily because IDL offers no language constructs for discussing the semantics of an interface; without expression of the semantics, ambiguities and misunderstandings will abound. This needs to be document in alternative ways.

· As a summary:

· All elements have interfaces.

· Interfaces are two way, consisting of requires and provides information.

· An element can have multiple interfaces and multiple actors at each interface.

· An architect must carefully choose what information to put in an interface specification, striking a balance between usability and modifiability. In an interface document, include only information on which you are willing to let people rely.

· Make sure to address the needs of the interface specification’s stakeholders. • In graphical depictions, show interfaces explicitly if elements have more than one or if you want to emphasize the existence of an interface through which interactions occur. Otherwise, interfaces can be implicit.

· Many notations for interface documentation show only syntactic information. Make sure to include semantic information as well.
A key issue is the availability of a platform and implementation independent format. Based on the analysis from above, we recommend the following formal choices:

· Consistent graphical presentation

· IDL for interface description

· JSON for message definition

· Doxygen for semantical description
We also strongly encourage to define the URL form as an instantiation of a formal description language and build the URL form on top of formalized interface description.
3 Specification Methodology
3.2 Graphical Presentation of Interface

A graphical presentation of the interface is encouraged. We recommend to use what is proposed in the Technical Note. Figure 1 shows some examples using an informal notation. The existence of an interface can be implied even without using an explicit symbol for it. If a relationship symbol joins an element/function symbol and the relationship type involves an interaction—as opposed to, say, “is a subclass of,” that implies that the interaction takes place through the element’s interface.
[image: image1.png]
Figure 1 Example Figure for Interface documentation
3.3 IDL for Interface Specification
Interface Definition Language (IDL) is a standard language for defining function and method interfaces. It supports common primitive data times IDL. Some of the base data types supported by IDL are int, Boolean, byte, char, double, float, long, short, and void *. IDL also supports signed and unsigned qualifiers, enumerations and more.
IDL's data types and definitions are both language-neutral and platform-neutral. This enables the definition of a common interface that may be implemented by different modules or components irrespective of the language and platform. An IDL interface provides a description of the functionality that will be provided by an object. It provides all of the information needed to develop clients that use the interface.
While IDL is not a programming language, there are tools that map IDL to just about every major programming language.
Below is a sample IDL definition of “order”
interface order {
 float calculate_tax ([in] float taxable_amount);
 float calculate_total([in] item_list items);
 bool place_order([in,out] item_list items);
}
3.4 JSON as Data Format
JSON (JavaScript Object Notation) is an open standard format that uses human-readable text to transmit data objects consisting of attribute–value pairs. Values in a JSON object may be of type array, Boolean, number, string or object.

JSON is the most common data format used for asynchronous browser/server communication, largely replacing XML. It is a language-independent data format. It derived from JavaScript, but code to generate and parse JSON-format data is available in many programming languages.
JSON Schema is used to define the structure of JSON data. It provides a contract for what JSON data format the applications exchange. Below is a sample of a JASON schema for a “startStreamingService” message.
{ "message":{

"appInstanceId":"string",

"header":{

"version":"string",

"typeId":6,

"type":"startStreamingService"

},

"body":{

"serviceHandle":1

}

 }

}
3.4
Doxygen for API Semantics

Doxygen is a cross-platform documentation system for C++, Java, C, and IDL, etc. It provides a mechanism to document code syntax and semantics. It allows tagging comments in code that will be used to generate nicely formatted output. Available tags enables capturing methods, parameters, pre and post conditions for calling methods as well as highlighting error condition and exceptions.

Doxygen can be used to generate on-line class browser (in HTML) and/or an off-line reference manual from a set of source files. Below is a sample of Doxygen comments for a function definition.
/** @name binary_search

 * @brief Search a array for a value using binary search.
 * @param[in] a Array of floats.
 * @param[in] n Number of elements of @a a to search.
 * @param[in] v Value to search for.
 * @return An index into array @a a or -1.
 *
 * @pre 0 <= n <= Size of the array @a a.
 * @pre For all i,j with 0 <= i < j < @a n, @a a[i] <= @a a[j].
 * @post (0 <= result < @a n and @a a[result] == @a v)
 * or (result == -1 and there is no i, 0 <= i < @a n, s.t. @a a[i] == @a v).
 */
int binary_search(const float* a, int n, float v)

3.5 Use Cases and Message Flows
[image: image5.emf]

Application Application

URL Dispatch

MBMS URL
handler

HTTP URL
handler

MBMS function HTTP
function

MBMS API

Message flows (sequence diagrams) are an interaction diagram that shows the objects/modules participating in a particular interaction and the messages they exchange arranged in a time sequence.

Figure 2 Example Figure for Sequence Diagram
4 Documentation Style
In the specification we want to primarily attract web developers and possibly also apply styles and tools that are used by these communities. Some of the content aspects are already discussed in section 2. This section more focusses on the actual documentation.
We believe we should for example check on W3C APIs are documented, see for example here:

· https://www.w3.org/TR/media-source/
· https://w3c.github.io/media-source/
Another relevant aspect may be that developers can submit “bugs” to the documentation. It is proposed to explore the flexibility of 3GPP documentation to get as close as possible to existing API definitions, such as W3C APIs.
5 Example Documentation of Streaming Service API
5.2 Graphical Presentation

[image: image6.png]

 Figure 3 Application to MBMS function API
5.3 Streaming Service IDL
interface ILTEStreamingService

{
 //import data types used by interface

 //datatypes defined as JSON messages

 import RegisterStreamingApp;

 import DeregisterStreamingApp;

 import ILTEStreamingServiceCallback;

 import SetServiceClassFilter;

 import GetStreamingServices;

 import StreamingServices;

 import StartStreamingService;

 import StopStreamingService;

 import SetOptIn;

 enum resultCode

{

 Success,

 NoRegistartion,

 UnknownError

}

 /**

 @name getVersion

 @brief retrieves the version of the current streaming service interface implemetation

 @return Interface Version

 **/

 String getVersion();

 /**

 @name createAppInstanceId

 @brief creates a unique instance id for application
 @param[in] appId application identifier

 @param[out] appInstanceId application unique instance identifier

 @return resultCode: operation success or failure
 **/

 resultCode createAppInstanceId([in] String appId,[out] String[] appInstanceId);

 /**

 @name deleteAppInstanceId

 @brief deletes the app instance ID

 @param appId application identifier
 @param appInstanceId application unique instance id
 @post application instance id is deleted and no longervalid

 @return resultCode
 **/

 resultCode deleteAppInstanceId([in] String appId,[in] String appInstanceId);

/**

 @name register
 @brief application registers a callback listener with the MBMS client

 @param regInfo information required for application registration.

RegisterStreamingApp message format is defined as a JSON string.
 @param cb callback listener
 @pre application calls createAppInstanceId()

 @post application registered for callbacks for streaming function

 MBMS client discovers server providing MBMS function

 MBMS server initiates bootstrap and periodic service discovery monitoring

 @return resultCode

 **/

 resultCode register([in] RegisterStreamingApp regInfo, [in] ILTEStreamingServiceCallback cb);
/**

 @name deregister

 @brief application deregisters a callback listener with the MBMS client
 @param regInfo information required for application deregistration.

DeregisterStreamingApp message format is defined as a JSON string.
 @param cb callback listener

 @pre application calls register
 @post application deregisters for streaming service events.

MBMS client stops all activity initiated by application
 @return resultCode

 **/

 resultCode deregister([in] DeregisterStreamingApp regInfo, [in] ILTEStreamingServiceCallback cb);
/**

 @name setServiceClassFilter
 @brief application sets a filter on streaming services it is interested in

 @param serviceClassInfo list of service class filters requested by application.

SetServiceClassFilter message format is defined as a JSON string.
 @pre application is resisted for streaming service
 @post application service class filter set

 MBMS client to filiter list of services to expose to application from USD

 based on application set filter
 @return resultCode

 **/

 resultCode setServiceClassFilter([in] SetServiceClassFilter serviceClassInfo);
/**

 @name getStreamingServices
 @brief retrieves the list of streaming services defined in the USD

 List of services is filtered by the service class filter,

 if a filter has been set by application

 @param GetStreamingServices parameters for get streaming services message.

GetStreamingServices message format is defined as a JSON string.

 @param[out] StreamingServices list of filtered streaming services
 @pre application is resisted for streaming service
 @post MBMS client returns list of streaming service to application
 @return resultCode

 **/

 resultCode getStreamingServices([in] GetStreamingServices info,[out] StreamingServices services);
/**

 @name startStreamingService

 @brief Start download of segments of streaming service over broadcast
 @param StartStreamingService parameters for start streaming services message.

StartStreamingService message format is defined as a JSON string.

 @pre application is resisted for streaming service
 @post start download of DASH segments over broadcast

 MBMS may send a servciestarted notification when ready for playback

 to trigger the app to start mediaplayer
 @return resultCode

 **/

 resultCode startStreamingService([in] StartStreamingService serviceInfo);
/**

 @name stopStreamingService

 @brief stop download of segments of streaming service over broadcast
 @param StopStreamingService parameters for start streaming services message.

StopStreamingService message format is defined as a JSON string.

 @pre application is resisted for streaming service
 @post stop download of DASH segments over broadcast

 MBMS may sends a servciestopped notification to trigger the app to stop mediaplayer
 @return resultCode

 **/

 resultCode stopStreamingService ([in] StopStreamingService serviceInfo);
/**

 @name setOptIn
 @brief application sets opt/optout from reception reporting on application downloaded data

 @param info optin info requested by application.

SetOptIn message format is defined as a JSON string.
 @pre application is resisted for streaming service
 @post MBMS function sets optin as per application request
 @return resultCode

 **/

 resultCode setOptIn([in] SetOptIn info);

}
interface ILTEStreamingServiceCallback

{
 //import data types used by callback interface

 //datatypes defined as JSON messages
 import ServiceStartedNotification;

 import ServiceStoppedNotification;

 import MpdUpdateNotification;

 import ServiceErrorNotification;

 import ServiceStalledNotification;

 import ServiceInitiatedNotification;

 import ServiceUpdatesAvailable;

 import BroadcastCoverageNotification;
/**

 @name serviceStarted
 @brief notification to application that streaming service is started and

 media player may be initialized for palyback
 @param notification parameters for service started notification .

ServiceStartedNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 Application calls startStreamingService

 **/

 void serviceStarted([in] ServiceStartedNotification notification);

/**

 @name serviceStopped
 @brief notification to application that streaming service is stopped and

 media player may be stopped for palyback
 @param notification parameters for service started notification.

ServiceStoppedNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 Application calls stopStreamingService

 **/

 void serviceStopped([in] ServiceStoppedNotification notification);
/**

 @name mpdUpdated
 @brief notification to application that mpd for streaming service is updated
 @param notification parameters for mpd updated notification.

MpdUpdateNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 Application calls startStreamingService

 **/

 void mpdUpdated([in] MpdUpdateNotification notification);
/**

 @name serviceError
 @brief notification to application when there is an error with broadcast download of service
 @param notification parameters for service error notification.

ServiceErrorNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 Application calls startStreamingService

 **/

 void serviceError([in] ServiceErrorNotification notification);
/**

 @name serviceStalled
 @brief notification to application when there is temporary disruption of

 the broadcast download of service
 @param notification parameters for service stalled notification.

ServiceStalledNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 Application calls startStreamingService

 **/

 void serviceStalled([in] ServiceStalledNotification notification);

 /**

 @name serviceUpdatesAvailable
 @brief notification to application on an update the available streaming services.

 Update may be due to the received USD or the network configuration
 @param notification parameters for service update available.

ServiceUpdatesAvailable message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 **/

 void serviceUpdatesAvailable([in] ServiceUpdatesAvailable info);

/**

 @name broadcastCoverageNotification
 @brief notification to application on the change of networl coverage state.

 State may be in /out of covergse. Notification send on a state change

 @param notification parameters for broadcast coverage notification.

BroadcastCoverageNotification message format is defined as a JSON string.

 @pre application is resisted for streaming service.

 **/

 void broadcastCoverageNotification([in] BroadcastCoverageNotification notification);
}
5.4 JSON datatypes

RegisterStreamingApp type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":1,

 "type":"registerStreamingApp"

 },

 "body":{

 }

 }

}

DeRegisterStreamingApp type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":2,

 "type":"deregisterStreamingApp"

 },

 "body":{

 }

 }

}

GetStreamingServices type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":5,

 "type":"getStreamingServices"

 },

 "body":{

 }

 }

}

StartStreamingService type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":6,

 "type":"startStreamingService"

 },

 "body":{

 "serviceHandle":1

 }

 }

}

StopStreamingService type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":7,

 "type":"stopStreamingService"

 },

 "body":{

 "serviceHandle":1

 }

 }

}

SetServiceClassFilter type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":15,

 "type":"setServiceClassFilter"

 },

 "body":{

 "serviceClassList":[

 {

 "serviceClass":"string1"

 },

 {

 "serviceClass":"string2"

 },

 {

 "serviceClass":"string3"

 }

]

 }

 }

}

SetOptin type:
{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":31,

 "type":"setOptIn"

 },

 "body":{

 "optIn":0

 }

 }

}
StreamingServices Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":18,

 "type":"streamingServices"

 },

 "body":{

 "serviceInfoList":[

 {

 "serviceName":[

 {

 "lang":"string",

 "name":"string"

 },

 {

 "lang":"string",

 "name":"string"

 }

],

 "serviceClass":"string",

 "serviceId":"string",

 "serviceLanguage":"string",

 "serviceHandle":1,

 "serviceAvailability":1,

 "mpdUri":"string",

 "sessionStartTime":"1390922935",

 "sessionEndTime":"1390983935"

 },

 {

 "serviceName":[

 {

 "lang":"string",

 "name":"string"

 },

 {

 "lang":"string",

 "name":"string"

 }

],

 "serviceClass":"string",

 "serviceId":"string",

 "serviceLanguage":"string",

 "serviceHandle":2,

 "serviceAvailability":1,

 "mpdUri":"string",

 "sessionStartTime":"1390902935",

 "sessionEndTime":"1390993935"

 }

],

 "groupInfo":{

 "currentGroup":{

 "groupName":"string",

 "serviceAreaIdList":[

 1

],

 "serviceHandleList":[

 1,

 2

]

 },

 "groupList":[

 {

 "groupName":"string",

 "serviceAreaIdList":[

 4,

 5

],

 "serviceHandleList":[

 6,

 7

]

 },

 {

 "groupName":"string",

 "serviceAreaIdList":[

 1

],

 "serviceHandleList":[

 1,

 2

]

 }

]

 }

 }

 }

}
ServiceUpdatesAvailable Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":23,

 "type":"serviceUpdatesAvailable"

 },

 "body":{

 }

 }

}
ServiceStarted Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":19,

 "type":"serviceStarted"

 },

 "body":{

 "serviceHandle":1

 }

 }

}
ServiceStopped Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":20,

 "type":"serviceStopped"

 },

 "body":{

 "serviceHandle":1

 }

 }

}
MPDUPdated Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":21,

 "type":"mpdUpdated"

 },

 "body":{

 "serviceHandle":1

 }

 }

}
ServiceError Type:

{

 "message":{

 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":26,

 "type":"serviceError"

 },

 "body":{

 "serviceHandle":1,

 "errorId":1,

 "errorMsg":"string"

 }

 }

}
ServiceStalled Type:

{

 "message":{
 "appInstanceId":"string",

 "header":{

 "version":"string",

 "typeId":25,

 "type":"serviceStalled"

 },

 "body":{

 "serviceHandle":1,

 "errorId":1,

 "errorMsg":"string"

 }

 }

}
5.5 Use Cases and Message Flows (Informative)
5.5.1 Application Registration:

[image: image2.emf]register()

Enable eMBMS

ApplicationMBMS ClientBM-SC

Retrieve user service definition(SDP) for service discovery -HTTP

Modem Layer

Persist service discovery

service definition

Activate TMGI

Open FLUTE session

(local multicast join) and receive file

service announcement MIME file

Deactivate TMGI

Close FLUTE session

getStreamingServices()

Return list of eMBMS

streaming services

defined in service

announcement

Service discovery bootstrapping

Service discovery

Process service

announcement MIME

file and persist

SA storage

Periodic Service Discovery(based on configuration parameter)

createAppInstanceId()

 Figure 4 Application Registration sequence diagram
5.5.2 Start Streaming Service

[image: image3.emf]startStreamingService(serviceID)

stopStreamingService(serviceID)

Activate TMGI

Application

Service Layer

Modem Layer

Open FLUTE session

(local multicast join) and receive

segment file(s) and perform FEC decode

Playback media by

fetching Media Segments

Deactivate TMGI

Multimedia

DASH Client

serviceStarted()

startMediaPlayer(mpdURL)

Get Media Segments

Close FLUTE session

stopMedaPlayer

Get MPD and IS

eMBMS Transport Mgmt

DASH Playback

eMBMS Transport Mgmt

Validate/Wait for validity of

scheduleFragment in USD

 Figure 5 Application starts streaming services
6 Proposal
This document provides guidelines and recommendations on how to document APIs in the context of MBMS. Based on the content, the following is proposed:

1. The specification is primarily targeted at developers that use the MBMS function. Other targets are the builder of the function and possibly the tester of the function.

2. The specification should set good practices for future API definition in 3GPP

3. The specification requires clear definitions of interface, function/element, messages, API, resource, etc.

4. The guidelines as provided in the Technical Note: http://www.sei.cmu.edu/reports/02tn015.pdf should be taken into account to the extent reasonable.
5. The interfaces should be documented in the following manner:
a. Consistent graphical presentation

b. IDL for interface description

c. JSON for message definition

d. Doxygen for semantical description

e. Example Use Cases and Message Flows

6. The semantical description and messages flows shall include messages sent and received on the MBMS service layer
7. The specification should contain an Annex that describes the API Specification Rules

8. As IDL and JSON enable easy conversion to different languages, no stage-3 APIs are necessary, but should in general not be prohibited.

9. The MBMS URL and Transport Protocol should be a derivation/instantiation of the generic APIs.

10. It should check to what extent we can establish typical developer support tools and proper documentation of the APIs. Examples maybe:

a. https://www.w3.org/TR/media-source/
b. https://w3c.github.io/media-source/
11. Another relevant aspect may be that developers can submit “bugs” to the documentation. It is proposed to explore the flexibility of 3GPP documentation to get as close as possible to existing API definitions, such as W3C APIs.
It is also proposed to add the relevant documentation in section 2, 3, 4, and 5 to the technical report.
[image: image4.png]
Native API

Messaging Interface

- 19/20 -

