Page 4
Draft prETS 300 ???: Month YYYY

3GPP SA4 MBS SWG ad-hoc #30 conference call
S4-AHI432
11 February 2014

Agenda item:
4
Source:

Qualcomm Incorporated

Title:
MI-EMO: FLUTE Enhancements - Source Protocol
Document for
Discussion and Agreement
1 Introduction
This document is an update to document S4-140034 focussing on the source protocol based on the architecture introduced in S4-AHI431.
2 Overview

The source protocol reuses existing technologies as available in FLUTE and LCT, but adds some additional signalling on file delivery table level to provide at least equivalent and to some extent extended functionality of the FDT.

The FLUTE+ session is delivered as download delivery session described by SDP as defined in TS26.346, section 7.3. The details are provided in section 2.3. Typically no FEC capabilities are defined, but only a scheme is signalled that describes the usage of the FLUTE+ source protocol.

NOTE: However, if for backward-compatibility reasons an existing FEC scheme is used then this may be signalled in the SDP. However, this mode is only considered if backward-compatibility needs to be supported.

For each download delivery session, one or multiple static File Delivery Description (FDD) fragments may be generated. Each FDD is uniquely identified by the @tsi value within a FLUTE+ delivery session.

A high level illustration of the separated delivery (temporally and over different types of delivery sessions) of file/object description metadata when FLUTE+ protocol is employed is shown in Fig. 3. As shown, those object descriptors which can only be dynamically generated at the time of content transmission are delivered along with the objects themselves, as entity header fields affiliated with the entity body. Also shown is the Session Description instance, sent as part of the USD metadata, which describes the FLUTE+ delivery session.

[image: image1.png]
Figure 3 – Separated delivery of object descriptors via USD and in-band entity-headers
3 SDP Parameters

The SDP parameters are reused from TS26.346, section 7.3, to describe the source flow of one FLUTE+ session.

4 File Delivery Descriptor
4.1 Static File Delivery Descriptor

One or multiple static File Delivery Description (FDD) fragments may be associated to one FLUTE+ session. Each of those expresses the collection of files. The FDD is replicating all functionalities of the FDT, but in addition provides the ability to generate an FDT equivalent using the TOI by using templates. The metadata fragment in the USD contains the following information:

	
	Element or Attribute Name
	Use
	Description

	
	StaticFDD
	
	specifies the static File Delivery Descriptor

	
	
	@tsi
	O
	specifies the transport session to which this static FDD is assigned to in the LCT header, i.e., the TSI uniquely determines which static FDD instance to use to interpret this delivery object or collection of delivery objects. In addition it provides also a unique identifier in the scope of the FLUTE+ session to for this single or collection of delivery objects.

	
	
	@objectDeliveryMode
	OD
default: 1
	defines the object delivery mode for more details see section 2.4.3.

	
	
	@oufOfOrderSending
	OD:

default: false
	specifies if the data is sent out of order. If set to true, the sender may send objects out of order, i.e. packets with higher ESI numbers for the same object may be sent before packets with lower ESI numbers. For more details refer to 2.6.

	
	
	@expires
	O
	identical to Expires attribute in FLUTE

	
	
	@complete
	O
	identical to Complete attribute in FLUTE

	
	
	@contentType
	O
	identical to Content-Location attribute in FLUTE

	
	
	@contentEncoding
	O
	identical to Content-Encoding attribute in FLUTE

	
	
	CodePoints
	0 ... N
	specifies the code points that are used in the packet header and the mapping to specific values

	
	
	
	@assignment
	M

	specifies the value of the CP field that is assigned to this code point

	
	
	
	@schemeIDURI
	M
	specifies a scheme that defines the code point

	
	
	
	@value
	O
	specifies the value of the scheme

	
	
	File (DeliveryObject)
	0...N
	identical to File element in FLUTE, but no FEC parameters must be present. If the FileTemplate is present, no File element shall be present

	
	
	
	@byteRange
	O
	specifies the byte range of the file that constitutes the delivery object

The byte range shall be expressed and formatted as a byte-range-spec as defined in RFC 2616, Clause 14.35.1.

It is restricted to a single expression identifying a contiguous range of bytes.

If not present the entire file constitutes the delivery object.

	
	
	FileTemplate
	0...1
	specifies a file template in the body. For details refer to section 2.4.2.

	
	
	
	@startTOI
	O

	this specifies the first TOI that is delivered. If not present, then this value is unknown.

	
	
	
	@endTOI
	O
	this specifies the last TOI that is delivered. If not present, then this value is unknown.

	
	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

Open Issue:
· It needs to be clarified if an inband delivery of the FDD is necessary or if one can rely on USD based delivery as a fragment only.

4.2 File Template

The static File Delivery Description may include a FileTemplate element. The value of FileTemplate element attribute may contain one or more of the identifiers as listed in Table XX.

The element enable to generate a one to one mapping between a TOI and URL.
In each URI, the identifiers from Table XX shall be replaced by the substitution parameter defined in Table XX. Identifier matching is case-sensitive. If the URI contains unescaped $ symbols which do not enclose a valid identifier then the result of URI formation is undefined. The format of the identifier is also specified in Table 16.

Each identifier may be suffixed, within the enclosing ‘$’ characters following this prototype:

%0[width]d

The width parameter is an unsigned integer that provides the minimum number of characters to be printed. If the value to be printed is shorter than this number, the result shall be padded with zeros. The value is not truncated even if the result is larger.

The FileTemplate shall be authored such that the application of the substitution process results in valid URIs.
Strings outside identifiers shall only contain characters that are permitted within URIs according to RFC 3986.

Table XX — Identifiers for File templates

	$<Identifier>$
	Substitution parameter
	Format

	$$
	Is an escape sequence, i.e. "$$" is non-recursively replaced with a single "$"
	not applicable

	TSI
	This identifier is substituted with the TSI of the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

	TOI
	This identifier is substituted with the TOI of the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

4.3 Dynamic File Delivery Description

4.3.1 Introduction

This protocol enables delivery of files. However, this protocol may also deliver entities where an entity is defined in alignment with RFC2616, section 7. An entity consists of metainformation in the form of entity-header fields and content in the form of an entity-body (the file), as described in section 7 of RFC2616.

This enables the assignment of file attributes to be contained in the same delivery object as the file itself, by in-band delivery in a dynamic fashion. For example, it enables the association of a Content-Location, the Content-Size, or even Content-Range etc.

In the extended FDT mode, FDTs may be sent and FDT extensions may be used to provide information that is currently only available in RFC2616 entity headers. For details see section 2.4.3.8.

The file delivery mode is signaled in the in the static File Delivery Descriptor table.

Table 1 — File Delivery Modes
	Value
	Description
	Definition

	1
	The delivered object is a regular file. All information associated to the object is defined in the FDD.
	see 2.4.3.2

	2
	The delivered object is an entity consisting of an entity-header and the file. The objects starts with an entity header.
	see 2.4.3.3

	3
	The delivered object is an entity consisting of an entity-header, the file and a trailer. This mode may be used for progressive delivery of files similar to the chunked transfer mode of HTTP/1.1.
	see 2.4.3.4

	4
	Redundant FDT mode. In this case the FDT is sent along with the object, but is redundant to the information in the FDD. This mode should only be used for backward-compatibility.
	see 2.4.3.5

	5
	Complementary FDT mode. In this case the FDT is sent along with the object, but contains additional information that may be useful for the receiver.
	see 2.4.3.6

	6
	Dynamic FDT mode. In this case the FDT is sent along with the object and contains essential additional information compared to the FDD. This mode is an alternative to mode 2/3 and is compatible with the existing FLUTE protocol.
	see 2.4.3.7

4.3.2 File Mode

In the regular file mode, the delivery object represents a file or, if @byteRange is present, a byte range of a file. All attributes of the file as well as the possible byte range are delivered in the static file delivery table.

4.3.3 Regular Entity Mode

In the regular entity mode, the delivery object represents an entity as defined in RFC2616, section 7. An entity consists of entity-header fields and an entity-body.

All attributes of the file are delivered in the static file delivery table applicable to the delivered file. In addition, the entity-header field sent along with the file provides additional information for the file. If certain attributes are present in both locations, then the entity header field in the entity-header delivered with the object overwrites the one in the static File Delivery Descriptor. Note that if the header contains a Content-Range entity-header then the delivery object only contains a byte range of the delivered file.

4.3.4 Progressive Entity Mode

The progressive entity mode is aligned with RFC2616 chunked transfer mode. The object in this case represents an entity as defined in RFC2616, section 7, followed by a trailer that may contain additional header fields. This enables file delivery in a progressive fashion, i.e. it can be delivered before the entire file is generated. The Trailer as defined RFC2616, section 14.40 shall be present either in the code point or the entity header.

All attributes of the file delivered in the static file delivery table apply to the delivered object. In addition, the entity-header field sent along with the file provides additional information for the file. If certain attributes are present in both locations, then the entity header field in the entity-header delivered with the object overwrites the one in the static File Delivery Descriptor.

4.3.5 Redundant FDT mode

In this mode the FDT is sent to provide exactly the same information as available in FDD, but enables backward-compatible operation. Receivers capable of processing the FDT may ignore the information in the FDT as all information is available from the FDD. This mode is primarily introduced for backward compatibility.
4.3.6 Complementary FDT mode

In this case the FDT is sent along with the delivery object, but contains additional information that may be useful for the receiver. Receivers capable of processing the FDD may ignore the information in the FDT as all essential information is available from the FDD, but the information may improve the operation. Examples for parameters that are not essential for operation are for example HTTP extension headers, or caching directives.

4.3.7 Dynamic FDT mode

In this case the FDT is sent along with the object, but contains essential additional information for the receiver. Receivers capable of processing the FDD must still process the FDT for proper operation.

4.4 FDT Extensions

FDT extensions should be considered to enable signalling of additional parameters that are only present in the RFC2616 entity headers today. This permits the signalling of HTTP extension headers and other HTTP capabilities through FLUTE.
5 Protocol and Payload Format

5.1 Definition
The source protocol of FLUTE+ is based on LCT Layered Coding Transport (LCT) Building Block as defined in RFC 5651 with the following details:

· The Layered Coding Transport (LCT) Building Block as defined in RFC 5651 is used as defined in Asynchronous Layered Coding (ALC), section 2.1, except that the congestion control header may be set to 0. In addition, the following constraints apply:

· The TSI in the LCT header shall be set according to which delivery object collection this packet applies as defined in the StaticFDD@tsi attribute.

· The Code Point in the LCT header may be set according to any StaticFDD@codePoint attribute.

· the first bit of the PSI shall be set to 0 to indicate a source packet.

· a source FEC Payload ID is used that specifies the starting address in octets of the delivery object. This information may be sent in two ways:
· as a direct address using 32 or 64 bit. The exact size should be a configuration information in the FDD

· in a backward-compatible manner to RFC 5053 where the SBN and ESI defines the start address together with the symbol size T.

· The LCT Header EXT_TIME extension as defined in RFC 5651 may be used by sender in the following manner:

· The Sender Current Time may be used to occasionally or frequently signal the sender current time depending on the application. This may be used in order to synchronize the clock of the sender and the receiver.

· The Expected Residual Time (ERT) may be used to indicate the expected remaining time for the current object.

· The SLC flag is typically of no use, but may be used to indicate addition/removal of segments.

· The Session description information is communicated through the SDP parameters SDPParameter as defined in section 2.3.
5.2 Out-of-order Sending
In certain cases the byte ranges of an object/file may not be sent sequentially, but later byte ranges may be sent earlier. To indicate that the sender applies such a technology, the @outOfOrderSending attribute shall be set to TRUE.

This technology may be especially useful for data formats where the header data can only be generated once the media is produced, for example to signal the size. This allows sending the header later to add the size of the actual data unit. If the size of the header might vary, provisioning for some padding data may be done. This may for example be applied to generate and send the moof header or the sidx later, but still enables to use existing data formats.

The flag may also be changed to a value to provide the interleaving depth in time (e.g. milliseconds) or in maximum data ranges of the OOO sending. Details are tbd.

5.3 Simple FEC scheme

A simple FEC scheme may be defined that enables to deliver byte ranges of objects.
5.4 Backward-compatibility Considerations

Using the one of the FDT modes, this protocol is backward-compatible to the existing FEC. The following advantages are available compared to the existing FLUTE protocol:

1. For receivers capable receiving the FDD, the reliance on FDT is removed and therefore the protocol is significantly more error-resilient.

2. the protocol enables to send timing information in the LCT independent of underlying radio layers.

3. Enhanced operation is possible by extended signalling along with the object.

4. With the ability to send the source packets as are.
6 DASH over FLUTE+

tbd
7 Proposal

It is proposed to agree on sections 2 to 6 as working assumptions.
- 8/8 -

