Page 4
Draft prETS 300 ???: Month YYYY

MBS SWG ad-hoc #28 conference
S4-AHI423
5 December, 2013

Telco
Agenda item:
4
Source:

Qualcomm Incorporated

Title:
MI-EMO: FLUTE Enhancements - Next Steps
Document for
Discussion and Agreement
1 Introduction
This document is an update to document S4-130911 and S4-131189. The main proposals of the S4-130911 are maintained, but stepwise integration and backward-compatibility are addressed. In addition compared to and S4-131189, some additional aspects are added.
	SA4 MBS SWG (-5 Dec 2013, Telco, Host Qualcomm, 15-17 cet)
	· Address postponed use cases from SA4#76

· Progress work on FLUTE Enhancement based on the documents submitted to SA4#76 including

· Further contributions to the requirements and working assumptions aspects of the TR

· Technical contributions expected

· Progress TR 26.848
· Schedule additional conference calls if considered necessary
· Document submission deadline: Dec 3, 23:59pm cet to 3GPP SA4 reflector

2 High-Level Design Principles
2.1 Introduction

The following design principles are documented in TR26.848 v0.4.0.
2.2 High-Level Design Principles
2.2.1 Error Resilience
HTTP is typically delivered over TCP and objects are expected to be delivered error-free. FLUTE+ should include methods for error resilience, in particular FEC. Also HTTP-based repair of objects as defined in TS26.346 should be naturally supported. However, in contrast to FLUTE the error resilience is preferably not integral to the base protocol, but an add-on.

FLUTE provides error resilience tools for file protection that are FEC and file repair. The FEC performance improves with larger source block sizes. File repair procedures are triggered after exhausting other recovery options and takes place over unicast. The advanced FLUTE protocol should enable low delay error resilience tools.
2.2.2 Self-containment

The client should be able to locate and reconstruct the transmitted resource without having to fetch another object. In FLUTE, the receiver needs to first fetch an FDT instance, which is carried with a TOI 0, and then parse the XML file and locate the TOI for the object of interest. The TOI assignment to a specific is arbitrary because the number of files delivered over the FLUTE session and their order may not be known a-priori. In the Advanced FLUTE, the file should be self-contained, i.e. it should contain its own metadata to enable the client to identify it. Out-of-band signaling is also possible.
The minimization of objects/information that is needed to be received in real-time is required to be available without delay. For example, in a dynamic object generation environment such as live DASH, the avoidance of delivering FDTs along with each object avoids dependency problems.
2.2.3 Optimization for Real-time Services

Real-time services consisting of a timed sequence of multiple objects (despite delivered over HTTP) generate a significant portion of Internet traffic. Examples are DASH Media Presentations or other HTTP streaming technologies. Optimization for such flow-based services is essential for FLUTE+. It is relevant that for real-time services objects need to be recovered and be available by a certain time. This aspects needs to be taken into account.

FLUTE comes with a FEC building block that divides the file into several source blocks of (almost) equal size and each source block is then divided into equal size packets, so called source symbols. When DASH media segments are being delivered, the source blocks and packets will have arbitrary boundaries inside the segment. The advanced FLUTE protocol should allow arbitrary fragmentation, for example to enable for packetization that takes into account structures of the delivered data.
As discussed in the previous requirement, a whole file is partitioned by the sender and recovered at the receiver. Without having the full file at the sender, transmission cannot be started. Also the whole file needs to be recovered before it can be forwarded to the application layer. The advanced FLUTE protocol should enable progressive delivery without having the full resource available at the sender. This may also allow a client to start consuming the file before it is fully available
2.2.4 Static and Dynamic Information

Real-time services consisting of a timed sequence of multiple objects (despite delivered over HTTP) generate a significant portion of Internet traffic. Examples are DASH Media Presentations or other HTTP streaming technologies. Optimization for such flow-based services is essential for an advanced FLUTE+. An important aspect in such flows is that certain information is static (assigned to all objects to the flow, e.g. the type, encoding, etc.) whereas other information is dynamic and assigned to each object (object size, URL, etc.). It should be possible to deliver static information out-of-band in a way similar to the SDP.

2.2.5 Modular, Generic, Extensible and Efficient Design
Despite priority for some use cases such as DASH over MBMS may be given, it is relevant to define FLUTE+ in a modular and generic manner such that any type of content that can be delivered over HTTP can also be delivered over FLUTE+. In addition, efficiency and extensibility are relevant. However, efficiency should always be traded off with complexity, modularity, and extensibility.
2.2.6 Recommended Requirements & Evaluation Criteria
The following list provides potential enhancements of FLUTE based on deployment experience:
1. Enhance FLUTE delivery of a sequence of related objects: Generally, if a sequence of objects is delivered, e.g. as a DASH Representation then this object flow contains static and dynamic information. The static information may be delivered ahead of time and the dynamic information may be delivered along with the object directly.
2. Minimize number of objects needed to receive to recover each portion of content: In particular for receiving an object, not only the object but also the FDT needs to be received. In a dynamic object generation environment such as live DASH, the avoidance of delivering FDTs along with each object avoids dependency problems.
3. Provide advance information to FLUTE receivers before objects sent/received: In certain cases some properties of the objects are know prior to the generation of the object. Providing this information to the receivers ahead of time allows more intelligent FLUTE receiver decisions and planning is possible. Specifically sending of known and static metadata of file objects once instead of repeatedly with each file increases the efficiency of file delivery by reducing the amount of overhead transmitted. Furthermore, predictability of time-varying metadata associated with file objects by the download delivery receiver, by using properties of those objects received in advance, enhances file delivery efficiency by not having to transmit that overhead continuously during the download delivery session.

4. An object or an object flow may be directly linked to an application, for example to a DASH Representation.
5. Enable chunk delivery/reception of objects. In case of live service where multimedia data is generated, this enables reduction of sender latency independent of usage of FEC. In addition, receiver latency reduction may be achieved if FEC is not used at all of if later stall when FEC used is acceptable. Chunked delivery combines the advantages of packet-based streaming with object delivery with or without FEC.
6. Enable variable size source packets: Source packet boundaries can be aligned with underlying media structure boundaries if desired. This may improve chunked delivery and may also provide additional error resilience as error concealment may be simplified if only single access units are lost.
7. Enable delivery of source content with no FEC semantics: In this case receivers that don’t implement/need/understand FEC can still receive the source stream. In addition, the same source stream can be easily mapped to multiple FEC configurations, e.g. different FEC schemes, different source block sizes, etc. This is in particular possible with systematic FEC codes such as the Raptor code defined TS26.346.
8. Enable FEC object bundling: Provide FEC protection over multiple objects, which can increase the efficiency of FEC protection.
9. Enable that delivered object contains all information of a complete HTTP GET response, i.e. the HTTP header and the HTTP GET response: In many cases the objects delivered through FLUTE are objects that are made available as resources on an http server/proxy/cache. FLUTE can very well be used to feed such HTTP caches, but it is preferable to have all information of a regular HTTP response included in the delivery of the object. Also objects may have certain live/availability times on caches. Signaling for this purpose may be necessary.

10. Add timing information to FLUTE delivery: FLUTE packets are time agnostic. By adding timing to FLUTE packets, this enables temporal measurements, e.g. for jitter or delay measurements.
11. Reuse current standards, especially FLUTE, as much as possible: For example, it should allow delivery of standard FLUTE objects in same session with FDTs if backward compatibility is necessary.
A protocol that enhances FLUTE is expected to fulfil the following features:

· Delivery of data objects over unidirectional transport to enable HTTP/1.1 similar functionalities

· Delivery of objects that are uniquely named by HTTP-URLs

· Provision of object properties along with the delivery of the object including Content-Type, Content-Encoding, size of extension headers, etc. without dependency on any other objects.
· Delivery and signaling of byte-ranges of a content object

· Chunked transfer of objects

· Enabling caching of objects

· reliable delivery of objects using existing error recovery methods

· by the support of application layer FEC

· by combining FEC protection for multiple objects

· without including/tying the source packets to a specific error recovery scheme

· efficient and reliable support of object flows with timing real-time properties, in particular segmented DASH Representations within a Media Presentation of type dynamic, which includes:

· delivery of static information a priori in a reliable information

· bundling of dynamic information with the media object

· enable the support of timing information to the delivery

· provide generality without tying the base protocol to a specific application or media format

· provide extensibility and modularity

· enable optimizations for specific applications as well as objects and object flows, including

· application-driven packet sizes and packet fragmentation including signaling of functional properties in packet headers, e.g. random access points in a sense that any packet prior to a random access point is of no value for the application.

· DASH content, for example using predictive information in the MPD also in the signaling of the FLUTE+ protocol

In addition, a protocol that enhances FLUTE preferably provides the following features:

· efficiency in terms of packet overhead

· reasonable complexity

· compatibility to some FLUTE building blocks
2.2.7 Gap Analysis & Evaluation
Changing FLUTE may be a major step forward and the pros and cons of doing should be considered. However, in order to obtain a better support for the delivery of objects flows as available in DASH and to deliver timed media data, the definition of a new object delivery protocol may be justifiable as long as it is kept as close as possible to what FLUTE provides and possible use a new version of FLUTE to extend as proposed in this document.

In order to progress the work in SA4, a list of potential functional enhancements should be collected and agreed. Based on the list of functional improvements, the decision should be made if and how FLUTE is enhanced and to what extent backward-compatibility is maintained.
3 Architecture

The enhanced unidirectional file delivery protocol is split in two major components:

· the source protocol in order to deliver objects or flows/collection of objects is introduced in section 4.

· the repair protocol (FEC Framework) in order to flexibly protect objects or bundles of objects for FEC defined in section 5.

The source protocol is closely aligned with FLUTE as defined in RFC 6726 using the LCT building block as is, but enhances signalling for real-time data.
The FEC Framework is described in terms of an additional layer between the transport layer (e.g., UDP) and the protocol defined in section 4. The FEC Framework does not protect packets, but objects. The FEC Framework makes use of a FEC scheme, in a similar sense to that defined in RFC5052, and uses the terminology of that document. The FEC scheme defines the FEC encoding and decoding, and it defines the protocol fields and procedures used to identify packet payload data in the context of the FEC scheme.

In this architecture, the interface to the transport layer supports the concepts of delivery objects to be transported and identification of collection of delivery objects.
The architecture outlined above is illustrated in Figure 1.
[image: image1.png]
Figure 1 Architecture for Delivery Protocol
A more detailed architecture is provided in Figure 2. The main aspects are highlighted:

1. The location where the data can be accessed and the protocol is defined. The protocol is LCT, so UDP/LCT handler is preferably defined.
2. Delivery Objects may be regular files, or they may be entity bodies of an HTTP GET response or a partial HTTP GET response, i.e. a delivery object itself may be a byte range of a file.

3. The delivery objects may consist of a collection of delivery objects and each of them has assigned static metadata. The static metadata is delivered ahead of the session in a USD.

4. Each delivery object itself may also have assigned additional dynamic metadata (DMD).
5. The files are delivered individually through a source "ALC" protocol without FEC. The source protocol is basically using LCT building block, but no other building blocks of FLUTE or ALC.
6. The Repair Framework may be used to protect pieces (i.e. contiguous byte ranges) of delivery objects, one delivery object or a bundle of delivery objects. Based on a defined super object, the repair ALC uses regular FEC Schemes, but typically only sends the repair symbols.

7. LCT header may be extended to add timing information.
[image: image2.png]
Figure 2 Detailed architecture of the FLUTE+ protocol
4 Source Protocol

4.1 Proposed alternatives compared to S4-130911

The following changes compared to S4-130911 are proposed:

1. Signalling of FEC schemes may be provided in S4-130911 in order to identify the source FEC payload ID. The source FEC payload ID may be the one in as proposed in S4-130911, but it may also be compatible with existing ones in TS26.346.
2. The mapping of the FDD may only be a TSI. A TSI is used as the delivery object collection identifier.
3. The encoding symbol extension is removed from the file delivery description as the signalling is done on the SDP, which includes the FEC parameters.
4. Three additional modes are added in the file delivery in order to enable backward-compatibility for FDT delivery. In addition to the FDD, also the FDT may be sent for each object. In one mode, the FDT is sent in a redundant manner, in the second mode in a complimentary manner in order to be combined with the FDD information to improve operation and in a third mode the FDT must be processed for proper operation.
5. The ability to deliver a contiguous byte range of a file as a delivery object is explicitly added by allowing to the Content-Range in the dynamic metadata.
4.2 Overview
The source protocol reuses existing technologies as available in FLUTE, ALC and LCT, but adds some additional signalling on file delivery table level to provide at least equivalent and to some extent extended functionality of the FDT.
Specifically, the source protocol uses LCT as is, and FLUTE and ALC with some modifications. The source protocol is referred to as enhanced FLUTE (FLUTE+).
The FLUTE+ session is a download delivery session described by SDP as defined in TS26.346, section 7.3. The details are provided in section 4.3. Typically no FEC capabilities are defined, but only a scheme is signalled that describes the usage of the FLUTE+ source protocol.

NOTE: However, if for backward-compatibility reasons an existing FEC scheme is used then this may be signalled in the SDP. However, this mode is only considered if backward-compatibility needs to be supported.
For each download delivery session, one or multiple static File Delivery Description (FDD) fragments may be generated. Each FDD is uniquely identified by the @tsi value within a FLUTE+ delivery session.

A high level illustration of the separated delivery (temporally and over different types of delivery sessions) of file/object description metadata when FLUTE+ protocol is employed is shown in Fig. 3. As shown, those object descriptors which can only be dynamically generated at the time of content transmission are delivered along with the objects themselves, as entity header fields affiliated with the entity body. Also shown is the Session Description instance, sent as part of the USD metadata, which describes the FLUTE+ delivery session.

[image: image3.png]
Figure 3 – Separated delivery of object descriptors via USD and in-band entity-headers
4.3 SDP Parameters

The following SDP parameters are reused from TS26.346, section 7.3, to describe the source flow of one FLUTE+ session.

4.4 File Delivery Descriptor
4.4.1 Static File Delivery Descriptor
One or multiple static File Delivery Description (FDD) fragments may be associated to one FLUTE+ session. The metadata fragment in the USD contains the following information:
	
	Element or Attribute Name
	Use
	Description

	
	StaticFDD
	
	specifies the static File Delivery Descriptor

	
	
	@tsi
	O
	specifies the transport session to which this static FDD is assigned to in the LCT header, i.e., the TSI uniquely determines which static FDD instance to use to interpret this delivery object or collection of delivery objects. In addition it provides also a unique identifier in the scope of the FLUTE+ session to for this single or collection of delivery objects.

	
	
	@objectDeliveryMode
	OD
default: 1
	defines the object delivery mode for more details see section 4.4.3.

	
	
	@oufOfOrderSending
	OD:

default: false
	specifies if the data is sent out of order. If set to true, the sender may send objects out of order, i.e. packets with higher ESI numbers for the same object may be sent before packets with lower ESI numbers. For more details refer to 4.6.

	
	
	@expires
	O
	identical to Expires attribute in FLUTE

	
	
	@complete
	O
	identical to Complete attribute in FLUTE

	
	
	@contentType
	O
	identical to Content-Location attribute in FLUTE

	
	
	@contentEncoding
	O
	identical to Content-Encoding attribute in FLUTE

	
	
	@byteRange
	O
	specifies the byte range of the file that constitutes the delivery object
The byte range shall be expressed and formatted as a byte-range-spec as defined in RFC 2616, Clause 14.35.1.
It is restricted to a single expression identifying a contiguous range of bytes.

If not present the entire file constitutes the delivery object.

	
	
	CodePoints
	0 ... N
	specifies the code points that are used in the packet header and the mapping to specific values

	
	
	
	@assignment
	M

	specifies the value of the CP field that is assigned to this code point

	
	
	
	@schemeIDURI
	M
	specifies a scheme that defines the code point

	
	
	
	@value
	O
	specifies the value of the scheme

	
	
	File
	0...N
	identical to File element in FLUTE, but no FEC parameters must be present. If the FileTemplate is present, no File element shall be present

	
	
	FileTemplate
	0...1
	specifies a file template in the body. For details refer to section 4.4.2.

	
	
	
	@startTOI
	O

	this specifies the first TOI that is delivered. If not present, then this value is unknown.

	
	
	
	@endTOI
	O
	this specifies the last TOI that is delivered. If not present, then this value is unknown.

	
	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>...<maxOccurs> (N=unbounded)

Note that the conditions only holds without using xlink:href. If linking is used, then all attributes are "optional" and <minOccurs=0>

Elements are bold; attributes are non-bold and preceded with an @.

An XML syntax is provided here:

	<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns="urn:ietf:params:xml:ns:fdt-static"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:ietf:params:xml:ns:fdt-static"
 elementFormDefault="qualified">
 <xs:element name="FDT-Static" type="FDT-StaticType"/>
 <xs:complexType name="FDT-StaticType">
 <xs:sequence>
 <xs:element name="CodePoint" type="CodePointType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:choice>
 <!-- Enables to specify a content location template that maps -->
 <xs:sequence>
 <xs:element name="File" type="FileType" minOccurs="1" maxOccurs="unbounded"/>
 </xs:sequence>
 <!-- Enables to specify a content location template that maps TOI into location -->
 <xs:element name="FileTemplate" type="FileTemplateType" minOccurs="0" maxOccurs="1"/>
 <xs:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:choice>
 </xs:sequence>
 <!-- Defines the TSI and code point to which this static FDT is assigned [0...255] -->
 <xs:attribute name="tsi"
 type="xs:unsignedInt"
 default="0"/>
 <xs:attribute name="expires"
 type="xs:string"
 use="required"/>
 <xs:attribute name="complete"
 type="xs:boolean"
 use="optional"/>
 <!-- defines object delivery mode -->
 <xs:attribute name="objectDeliveryMode"
 type="xs:unsignedInt"
 default="1"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="byteRange"
 type="xs:string"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="FileType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="skip"
 minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="Content-Location"
 type="xs:anyURI"
 use="required"/>
 <xs:attribute name="TOI"
 type="xs:positiveInteger"
 use="required"/>
 <xs:attribute name="Content-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Transfer-Length"
 type="xs:unsignedLong"
 use="optional"/>
 <xs:attribute name="Content-Type"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-Encoding"
 type="xs:string"
 use="optional"/>
 <xs:attribute name="Content-MD5"
 type="xs:base64Binary"
 use="optional"/>
 <xs:anyAttribute processContents="skip"/>
 </xs:complexType>
 <xs:complexType name="FileTemplateType">
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="startTOI" type="xs:string" use="optional"/>
 <xs:attribute name="endTOI" type="xs:string" use="optional"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
</xs:schema>

4.4.2 File Template

The static File Delivery Description may include a FileTemplate element. The value of FileTemplate element attribute may contain one or more of the identifiers as listed in Table XX.
The element enable to generate a one to one mapping between a TOI and URL.
In each URI, the identifiers from Table XX shall be replaced by the substitution parameter defined in Table XX. Identifier matching is case-sensitive. If the URI contains unescaped $ symbols which do not enclose a valid identifier then the result of URI formation is undefined. The format of the identifier is also specified in Table 16.

Each identifier may be suffixed, within the enclosing ‘$’ characters following this prototype:

%0[width]d

The width parameter is an unsigned integer that provides the minimum number of characters to be printed. If the value to be printed is shorter than this number, the result shall be padded with zeros. The value is not truncated even if the result is larger.

The FileTemplate shall be authored such that the application of the substitution process results in valid URIs.
Strings outside identifiers shall only contain characters that are permitted within URIs according to RFC 3986.

Table XX — Identifiers for File templates

	$<Identifier>$
	Substitution parameter
	Format

	$$
	Is an escape sequence, i.e. "$$" is non-recursively replaced with a single "$"
	not applicable

	TSI
	This identifier is substituted with the TSI of the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

	TOI
	This identifier is substituted with the TOI of the corresponding LCT packet.
	The format tag may be present.

If no format tag is present, a default format tag with width=1 shall be used.

4.4.3 Dynamic File Delivery Description
4.4.3.1 Introduction

This protocol enables delivery of files. However, this protocol may also deliver entities where an entity is defined in alignment with RFC2616, section 7. An entity consists of metainformation in the form of entity-header fields and content in the form of an entity-body (the file), as described in section 7 of RFC2616.

This enables the assignment of file attributes to be contained in the same delivery object as the file itself, by in-band delivery in a dynamic fashion. For example, it enables the association of a Content-Location, the Content-Size, or even Content-Range etc.

In the extended FDT mode, FDTs may be sent and FDT extensions may be used to provide information that is currently only available in RFC2616 entity headers. For details see section 4.4.3.8.

The file delivery mode is signaled in the in the static File Delivery Descriptor table.

Table 1 — File Delivery Modes
	Value
	Description
	Definition

	1
	The delivered object is a regular file
	see 4.4.3.2

	2
	The delivered object is an entity consisting of an entity-header and the file
	see 4.4.3.3

	3
	The delivered object is an entity consisting of an entity-header, the file and a trailer. This mode may be used for progressive delivery of files similar to the chunked transfer mode of HTTP/1.1.
	see 4.4.3.4

	4
	Redundant FDT mode. In this case the FDT is sent along with the object, but is redundant to the information in the FDD. This mode should only be used for backward-compatibility.
	see 4.4.3.5

	5
	Complementary FDT mode. In this case the FDT is sent along with the object, but contains additional information that may be useful for the receiver.
	see 4.4.3.6

	6
	Dynamic FDT mode. In this case the FDT is sent along with the object and contains essential additional information compared to the FDD. This mode is an alternative to mode 2/3 and is compatible with the existing FLUTE protocol.
	see 4.4.3.7

4.4.3.2 File Mode

In the regular file mode, the delivery object represents a file or, if @byteRange is present, a byte range of a file. All attributes of the file as well as the possible byte range are delivered in the static file delivery table.
4.4.3.3 Regular Entity Mode

In the regular entity mode, the delivery object represents an entity as defined in RFC2616, section 7. An entity consists of entity-header fields and an entity-body.

All attributes of the file are delivered in the static file delivery table applicable to the delivered file. In addition, the entity-header field sent along with the file provides additional information for the file. If certain attributes are present in both locations, then the entity header field in the entity-header delivered with the object overwrites the one in the static File Delivery Descriptor. Note that if the header contains a Content-Range entity-header then the delivery object only contains a byte range of the delivered file.
4.4.3.4 Progressive Entity Mode

The progressive entity mode is aligned with RFC2616 chunked transfer mode. The object in this case represents an entity as defined in RFC2616, section 7, followed by a trailer that may contain additional header fields. This enables file delivery in a progressive fashion, i.e. it can be delivered before the entire file is generated. The Trailer as defined RFC2616, section 14.40 shall be present either in the TSI or the entity header.

All attributes of the file delivered in the static file delivery table apply to the delivered object. In addition, the entity-header field sent along with the file provides additional information for the file. If certain attributes are present in both locations, then the entity header field in the entity-header delivered with the object overwrites the one in the static File Delivery Descriptor.
4.4.3.5 Redundant FDT mode

In this mode the FDT is sent to provide exactly the same information as available in FDD, but enables backward-compatible operation. Receivers capable of processing the FDT may ignore the information in the FDT as all information is available from the FDD. This mode is primarily introduced for backward compatibility.
4.4.3.6 Complementary FDT mode

In this case the FDT is sent along with the delivery object, but contains additional information that may be useful for the receiver. Receivers capable of processing the FDD may ignore the information in the FDT as all essential information is available from the FDD, but the information may improve the operation. Examples for parameters that are not essential for operation are for example HTTP extension headers, or caching directives.
4.4.3.7 Dynamic FDT mode

In this case the FDT is sent along with the object, but contains essential additional information for the receiver. Receivers capable of processing the FDD must still process the FDT for proper operation.
4.4.3.8 FDT Extensions

FDT extensions should be considered to enable signalling of additional parameters that are only present in the RFC2616 entity headers today.
4.5 Protocol and Payload Format

The source protocol of FLUTE+ is based on LCT Layered Coding Transport (LCT) Building Block as defined in RFC 5651 with the following details:

· The Layered Coding Transport (LCT) Building Block as defined in RFC 5651 is used as defined in Asynchronous Layered Coding (ALC), section 2.1, except that the congestion control header may be set to 0. In addition, the following constraints apply:
· The TSI in the LCT header shall be set according to which delivery object collection this packet applies as defined in the StaticFDD@tsi attribute.

· The Code Point in the LCT header may be set according to any StaticFDD@codePoint attribute.
· the first bit of the PSI shall be set to 0 to indicate a source packet.
· a source FEC Payload ID is used that specifies the starting address in octets of the delivery object.
· The LCT Header EXT_TIME extension as defined in RFC 5651 may be used by sender in the following manner:
· The Sender Current Time may be used to occasionally or frequently signal the sender current time depending on the application. This may be used in order to synchronize the clock of the sender and the receiver.
· The Expected Residual Time (ERT) may be used to indicate the expected remaining time for the current object.

· The SLC flag is typically of no use, but may be used to indicate addition/removal of segments.
· The Session description information is communicated through the SDP parameters SDPParameter as defined in section 4.3.
4.6 Out-of-order Sending
In certain cases the byte ranges of an object/file may not be sent sequentially, but later byte ranges may be sent earlier. To indicate that the sender applies such a technology, the @outOfOrderSending attribute shall be set to TRUE.

This technology may be especially useful for data formats where the header data can only be generated once the media is produced, for example to signal the size. This allows sending the header later to add the size of the actual data unit. If the size of the header might vary, provisioning for some padding data may be done. This may for example be applied to generate and send the moof header or the sidx later, but still enables to use existing data formats.
The flag may also be changed to a value to provide the interleaving depth in time (e.g. milliseconds) or in maximum data ranges of the OOO sending. Details are tbd.
4.7 Simple FEC scheme

A simple FEC scheme may be defined that enables to deliver byte ranges of objects.
4.8 Backward-compatibility Considerations

Using the one of the FDT modes, this protocol is backward-compatible to the existing FEC. The following advantages are available compared to the existing FLUTE protocol:
1. For receivers capable receiving the FDD, the reliance on FDT is removed and therefore the protocol is significantly more error-resilient.

2. the protocol enables to send timing information in the LCT independent of underlying radio layers.

3. Enhanced operation is possible by extended signalling along with the object.
4.9 DASH over FLUTE+

tbd
5 Object-based FEC Framework

5.1 Introduction

The delivery objects and bundles of delivery objects delivered with the protocol above may be protected with FEC. The base protocol as defined in section 4 avoids not include any FEC-specific signaling. However, in the backward-compatible mode, the signalling is still based on the FEC scheme.
In this section an FEC framework is defined that enables FEC protection of individual or bundles of objects when using the protocol defined in section 4.
The FEC framework uses concepts of the FECFRAME work as defined in RFC6363 as well as the FEC building block RFC 5052 of FLUTE/ALC/LCT.

The FEC design adheres the following principles

· FEC-related information is provided only where needed (Note that the source flow may still be based on a FEC scheme for backward-compatibility reasons).
· Non-FEC capable receivers can ignore repair packets

· The FEC is symbol-based with fixed symbol size per protected repair flow. The ALC protocol and existing FEC schemes can be reused.
· A repair flow provides protection of objects of one or more collection of objects.

The FEC specific components of the FEC Framework are:
· FEC repair flow declaration including all FEC specific information.

· FEC transport object, which contains the source object information and any related information that is to be FEC encoded. FEC encoding is applied either to a single delivery object or the concatenation of multiple FEC transport objects, referred to as a super-object.
· FEC protocol and packet structure.
A receiver needs to be able to recover source objects from repair packets based on available FEC information.

5.2 FEC Repair Flows Declaration
5.2.1 General

In MBMS User Services, a repair flow declaration may be included as a fragment of a bundle description or a use service description.

As part of the repair flow declaration, a repair flow identifier is provided for the repair flow in the @tsi attribute, and all repair flows shall be declared to be of type. The combination of the IP address, the port and the repair flow identifier provide a unique identifier amongst all flows within a user service. Note that an IP/port combination may carry different FEC repair data as well as source data. In this case, the data is differentiated by the different TSI values in the LCT header.
The repair flow declaration indicates the pattern of source objects from source flows that are to be protected by the repair flow.

5.2.2 Semantics

The semantics are provided in Table ZZ.
NOTE: the semantics are aligned with the FEC Repair Stream Description of the MBMS Streaming Framework defined in TS26.346. The definition in TS26.346 is using SDP, but here XML-based signaling is assumed.
Table ZZ — Repair Flow Semantics
	Element or Attribute Name
	Use
	Description

	RepairFlow
	
	defines a repair flow in session

	
	@tsi
	OD
default: 0
	specifies the TSI to which this repair flow is assigned to in the LCT header in the session

	
	@sessionDescription
	M

	references the session description that contains the Repair Flow. The SDP parameters are defined in section 4.3.

	
	FECParameters
	
	FEC Parameters (better structuring may be suitable necessary)

	
	
	@fecEncodingId
	M
	specifies the applied FEC scheme.

	
	
	@maximumDelay
	O
	specifies the maximum delivery delay between any source packet in the source flow and the repair flow.

	
	
	FECOTI
	1
	specifies the FEC Object Transmission Information (FEC OTI) as defined in RFC 5052. FEC OTI corresponds to FEC related information associated with an object as well as FEC information associated with the encoding symbols of the object is to be included within this declaration and applies to all repair packets with the repair flow.

	
	
	ProtectedObject
	0 ... N
	specifies the source flow that are protected by the this Repair Flow and the details on how the protection is done.

If no element is present, it is identical as if no attribute in the element is present, i.e.

· the source flow is contained in the same session as the repair flow.
· the source flow is signaled with the same TSI as the repair flow. In this case the packets are differentiated by the PSI flag in the LCT header.
· the source TOI is the same as the repair TOI.
· the size of each FEC Transport Object shall be provided in the repair packets using the EXT_TOL header.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>…<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @

Table ZZ — Protected Object Bundle
	Element or Attribute Name
	Use
	Description

	ProtectedObject
	
	defines how certain source objects of a collection of objects are included in the repair flow

	
	@sessionDescription
	O

	references the session description that contains the Source Flow. If not present, the source flow is contained in the same session as the repair flow.

	
	@tsi
	O
	specifies transport session identifier for the source flow to be protected. If not present, the source flow is signaled with the same tsi/TSI as the repair flow. In this case the packets are differentiated by the SPI flag in the LCT header.

	
	@codePoint
	O
	specifies code point identifier for the source flow to be protected. If not present, the source flow is signaled with the same code point as the repair flow. In this case the packets are differentiated by the SPI flag in the LCT header.

	
	@sourceTOI
	O
	specifies the TOI of the source object as a mapping of the TOI included in the repair flow. For details see section 5.3.4.

If not present, the source TOI is the same as the repair TOI.

	
	@fecTransportObjectSize
	O
	specifies the default size of each FEC Transport Object, in units of symbols. If not present then these values shall be provided in the repair packets using the EXT_TOL header. If present, the EXT_TOL header shall not be present.

	Legend:

For attributes: M=Mandatory, O=Optional, OD=Optional with Default Value, CM=Conditionally Mandatory.

For elements: <minOccurs>…<maxOccurs> (N=unbounded)

Elements are bold; attributes are non-bold and preceded with an @

5.2.3 Syntax

	<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="urn:3gpp:mbms:schema:repairflow:2013"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013">

 <xs:annotation>
 <xs:appinfo>Repair Flow Fragment</xs:appinfo>
 <xs:documentation xml:lang="en">
 This Schema defines the Repair Flow.
 </xs:documentation>
 </xs:annotation>

 <!-- Repair Flow: main element -->
 <xs:element name="RepairFlow" type="RepairFlowType"/>

 <!-- Repair Flow Type -->
 <xs:complexType name="RepairFlowType">
 <xs:sequence>
 <xs:element name="FECParameters" type="FECParametersType" minOccurs="1" maxOccurs="1"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="tsi" type="xs:unsignedInt"/>
 <xs:attribute name="codePoint" type="xs:unsignedInt"/>
 <xs:attribute name="sessionDescription" type="xs:anyURI"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <!-- FEC Parameters Type -->
 <xs:complexType name="FECParametersType">
 <xs:sequence>
 <xs:element name="FECOTI" type="xs:string" minOccurs="1" maxOccurs="1"/>
 <xs:element name="ProtectedObject" type="ProtectedObjectType" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="fecEncodingID" type="xs:unsignedInt"/>
 <xs:attribute name="maximumDelay" type="xs:unsignedInt" use="optional"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>

 <!-- Protected Object Bundle Parameters Type -->
 <xs:complexType name="ProtectedObjectType">
 <xs:sequence>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:attribute name="codePoint" type="xs:unsignedInt" use="optional"/>
 <xs:attribute name="sessionDescription" type="xs:anyURI" use="optional"/>
 <xs:attribute name="sourceTOI" type="xs:string" use="optional"/>
 <xs:attribute name="fecTransportObjectSize" type="xs:unsignedInt" use="optional"/>
 <xs:anyAttribute namespace="##other" processContents="lax"/>
 </xs:complexType>
</xs:schema>

5.3 FEC Protocol
5.3.1 Introduction

This section specifies the protocol elements for the FEC Framework. Four components of the protocol are defined in this document and are described in the following sections:

1. FEC Transport Object construction

2. Super-object construction as concatenation of FEC Transport Objects
3. TOI mapping

4. Repair packet generation
The operation of the FEC Framework is governed by Repair Flow definition as defined in section 5.2.
5.3.2 FEC Transport Object construction

For each object (regular file or entity mode), the FEC transport object for a source object comprises the source object itself, padding octets and the source object size F in octets, where F is carried in a 4 octet field. The FEC transport object size S, in symbols, shall be an integer multiple of the symbol size T.

The FEC transport object size S in units of symbols is determined from the session information and/or the repair packet headers.

F is carried in the last 4 octets of the FEC transport object.

Specifically, let

· F be the size of the source object in octets

· F be the F octets of data of the source object
· f denote four octets of data carrying the value of F in network octet order (high order octet first)

· S be the size of the FEC transport object with S=ceil((F+4)/T.
· P be S*T-4-F zero octets of data, i.e. padding placed between the source object and the value of F at the end of the FEC transport object
· O be the concatenation of F, P and f
O then constitutes the FEC transport object of size S*T octets. Note that padding octets and the object size F are NOT sent in source packets of source object, but are only part of FEC transport object that FEC decoding recovers. Hereafter, the TOL of a source object is used to refer to the size in symbols of the FEC Transport Object corresponding to the source object. Thus, in the above context, the TOL of the source object is S.

Figure 3 shows an example with S=3.

[image: image4.png]
Figure 3 Transport Object Construction (Example with S = 3)

5.3.3 Super-Object and FEC repair for source objects
From the Repair flow declaration, the construction of a super-object as the concatenation of different transport objects can be determined. The super-object includes then information about the FEC transport objects to be protected, their size, as well as the order of the FEC transport objects within the super-object.

Let

· Let N be the total number of source objects for the super-object construction,

· For i = 0,…,N-1, let S[i] be the TOL for source object i.

· B be the super-object which is the concatenation of the FEC Transport objects in order, which is comprised of K = sum (i=0) (N-1) S[i] source symbols.
The TOL (in unit of symbols) of source object i, S[i], may be carried by different means:

1. Carried in repair packet header of the LCT packet as defined in section 5.3.6.
2. As part of the @fecTransportObjectSize included in the ProtectedObject. In this case this information needs to be provided a priori.
5.3.4 TOI Mapping

If the repair flow declaration contains a ProtectedObject then the @sourceTOI attribute specifies a mapping of the repair TOI value contained in a repair packet to a source TOI of a source object that the repair packet protects.

The mapping is described through an equation where in C format where the TOI field of the repair flow is specified as the variable TOI and the result of the equation determines the source TOI. The value of the attribute shall be a proper C equation with at most one variable TOI and without the addition of the ";" sign.
5.3.5 Examples for RepairFlow Declarations

5.3.5.1 Example 1
In example 1, a repair packet with TSI value 10 and TOI 20 protects the source object with TOI 20 from the source flow with TSI value 1. The transport object size is defined and the transport object length block has a total size of 892 symbols. The repair flow declaration is provided below:
	<?xml version="1.0"?>
<RepairFlow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013"
 xsi:schemaLocation="urn:3gpp:mbms:schema:repairflow:2013 repairflow.xsd"
 tsi="10"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp">
 <FECParameters fecEncodingID="6" maximumDelay="5000">
 <FECOTI>XXXYYYYZZZZ</FECOTI>
 <ProtectedObject
 tsi="1"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp"

 sourceTOI="TOI"
 fecTransportObjectSize="892"/>
 </FECParameters>
</RepairFlow>

5.3.5.2 Example 2:
In example 2, a repair packet with TSI 11 and TOI 20 protects the concatenation of two source objects: the source object with TOI 20 from the source flow (collection of source objects) with TSI 2 and the source object with TOI 20 from the source flow (collection of source objects) with TSI 3. The transport object size in both cases is defined and the super-object has a total size of 2232 symbols. The super-object that is protected by a repair packet with TSI 11 and TOI 20 is the concatenation of the FEC Transport Object for the source object with TSI 2 and TOI 20 and the FEC Transport Object for the source object with TSI 3 and TOI 20.

All three collected objects are delivered in the same sdp session.

Also default parameters are used for the values in the ProtectedObject.

	<?xml version="1.0"?>
<RepairFlow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013"
 xsi:schemaLocation="urn:3gpp:mbms:schema:repairflow:2013 repairflow.xsd"
 tsi="11"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp">
 <FECParameters fecEncodingID="6" maximumDelay="5000">
 <FECOTI>XXXYYYYZZZZ</FECOTI>
 <ProtectedObject tsi="2" fecTransportObjectSize="892"/>
 <ProtectedObject tsi="3" fecTransportObjectSize="1340"/>
 </FECParameters>
</RepairFlow>

5.3.5.3 Example 3:

In example 3, a repair packet with TSI 12 and TOI 20 protects the concatenation of three source objects: the source object with TOI 40 from the source flow with TSI 4, the source object with TOI 20 from the source flow with TSI 5 and the source object with TOI 41 from the source flow with TSI 4. In this example 3, the super-object that is protected by a repair packet with TSI 12 and TOI 20 is the concatenation of the FEC Transport Object for the source object with TSI 4 and TOI 40, and the FEC Transport Object for the source object with TSI 5 and TOI 20 and the FEC Transport Object for the source object with TSI 4 and TOI 41. In this example, the transport object sizes of the source objects are not included in the repair flow declaration.

Note that the sequence of the ProtectedObject declarations within a RepairFlow declaration determines the order of the FEC transport objects for the source objects in the super-object.

	<?xml version="1.0"?>
<RepairFlow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013"
 xsi:schemaLocation="urn:3gpp:mbms:schema:repairflow:2013 repairflow.xsd"
 tsi="12"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp">
 <FECParameters fecEncodingID="6" maximumDelay="5000">
 <FECOTI>XXXYYYYZZZZ</FECOTI>
 <ProtectedObject tsi="4" sourceTOI="2*TOI"/>
 <ProtectedObject tsi="5"/>
 <ProtectedObject tsi="4" sourceTOI="2*TOI+1"/>
 </FECParameters>
</RepairFlow>

5.3.5.4 Example 4

In example 4, a repair packet with TOI 13 protects the source object with TOI 14.

	<?xml version="1.0"?>
<RepairFlow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013"
 xsi:schemaLocation="urn:3gpp:mbms:schema:repairflow:2013 repairflow.xsd"
 tsi="13"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp">
 <FECParameters fecEncodingID="6" maximumDelay="5000">
 <FECOTI>XXXYYYYZZZZ</FECOTI>
 <ProtectedObject tsi="6" sourceTOI="TOI+1"/>
 </FECParameters>
</RepairFlow>

5.3.5.5 Example 5:

In example 5, a repair packet with TOI 10 protects the concatenation of two source objects: the source object with TOI 20 and the source object with TOI 21. In this case, assume that there is a source object declaration with TSI 7 for the two source objects with TOI = 20 and TOI = 21, and then the repair packets that protect these source objects carry TOI = 10. The following repair flow declaration with TSI 14 provides the static FDD.

	<?xml version="1.0"?>
<RepairFlow xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:3gpp:mbms:schema:repairflow:2013"
 xsi:schemaLocation="urn:3gpp:mbms:schema:repairflow:2013 repairflow.xsd"
 tsi="14"
 sessionDescription="http://mbmsrocks.com/example-session1.sdp">
 <FECParameters fecEncodingID="6" maximumDelay="5000">
 <FECOTI>XXXYYYYZZZZ</FECOTI>
 <ProtectedObject tsi="7" repairTOI="2*TOI"/>
 <ProtectedObject tsi="7" repairTOI="2*TOI+1"/>
 </FECParameters>
</RepairFlow>

The ordering of the FEC Transport Objects in the super-object is the same as the order of the corresponding source objects determined by the individual repair declaration. Thus, in example 5, the super-object corresponding to a repair packet with TOI 10 is the concatenation of the FEC Transport Object for the source object with TOI 20 and the FEC Transport Object for the source object with TOI 21.

5.3.6 Repair Packet Structure
The repair protocol is based on Asynchronous Layered Coding (ALC) as defined RFC 5775 and the LCT Layered Coding Transport (LCT) Building Block as defined in RFC 5651 with the following details:

· The Layered Coding Transport (LCT) Building Block as defined in RFC 5651 is used as defined in Asynchronous Layered Coding (ALC), section 2.1. In addition, the following constraints apply:
· The Code Point in the LCT header should/shall be set according to which repair flow this packet applies as defined in the RepairFlow.SDPParameter@codePoint attribute.

· The first bit of the SPI shall be set to 1, i.e. it indicates a repair packet.

· The size of the individual FEC transport objects may be carried in a Header Extension Content (HEC) field of the EXT_TOL LCT Header Extension contains the FEC Transport Object Length Information S as defined above. The definition of the extension header is provided in section 5.3.7.
· The FEC building block is used as is according to RFC5053/6330, but only repair packets shall be delivered
· Each repair packet within the scope of the repair flow (as indicated by the CP field in the LCT header) shall carry the appropriate repair TOI.
· The Session description information is communicated through the SDP parameters SDPParameter as defined in section 4.3.
· The LCT Header EXT_TIME extension as defined in RFC 5651 may be used by sender in the following manner:

· The Sender Current Time may be used to occasionally or frequently signal the sender current time depending on the application. This may be used in order to synchronize the clock of the sender and the receiver.

· The Expected Residual Time (ERT) may be used to indicate the delivery of the current source block.
5.3.7 FEC Transport Object Length LCT Extension Header
This section defines the Transport Object Length Header Extension for LCT. The following applied for this header extension

· The value of HET is set to XX (needs to be registered with IANA, likely 66).
· The HEL field must be present.

· Depending on the header length, the length of each protected object is provided in 16 bit. The 16 bit fields describe the objects according to the order in the super-object. If an even number of objects are protected, then the last 16 bit shall bit set to 0. If the length field is set to 0, then the object is not present.
6 Analysis Against the Recommended Requirements & Evaluation Criteria

6.1 Analysis Against the Recommended Requirements
The following provides a brief analysis of the enhanced protocol against the criteria provided in TR26.848 v0.4.0.
	Recommended Requirements
	Analysis

	Enhance FLUTE delivery of a sequence of related objects: Generally, if a sequence of objects is delivered, e.g. as a DASH Representation then this object flow contains static and dynamic information. The static information may be delivered ahead of time and the dynamic information may be delivered along with the object directly.
	This is addressed by adding the static File Delivery Descriptor and the entity mode in the delivery.

	Minimize number of objects needed to receive to recover each portion of content: In particular for receiving an object, not only the object but also the FDT needs to be received. In a dynamic object generation environment such as live DASH, the avoidance of delivering FDTs along with each object avoids dependency problems.
	This is addressed by adding the static File Delivery Descriptor and the entity mode in the delivery

	Provide advance information to FLUTE receivers before objects sent/received: In certain cases some properties of the objects are know prior to the generation of the object. Providing this information to the receivers ahead of time allows more intelligent FLUTE receiver decisions and planning is possible. Specifically sending of known and static metadata of file objects once instead of repeatedly with each file increases the efficiency of file delivery by reducing the amount of overhead transmitted. Furthermore, predictability of time-varying metadata associated with file objects by the download delivery receiver, by using properties of those objects received in advance, enhances file delivery efficiency by not having to transmit that overhead continuously during the download delivery session.
	This is addressed by adding the static File Delivery Descriptor and the FileTemplate.

	An object or an object flow may be directly linked to an application, for example to a DASH Representation.
	This may be done by specifying the Content-type of a collection of objects. Also the TOI may be directly mapped to segment numbers.

	Enable chunk delivery/reception of objects. In case of live service where multimedia data is generated, this enables reduction of sender latency independent of usage of FEC. In addition, receiver latency reduction may be achieved if FEC is not used at all of if later stall when FEC used is acceptable. Chunked delivery combines the advantages of packet-based streaming with object delivery with or without FEC.
	this is enabled by segmenting the object in byte ranges and/or chunks. Both modes are supported. In addition, out-of-order sending is permitted to allows delivering header information of an object later.

	Enable variable size source packets: Source packet boundaries can be aligned with underlying media structure boundaries if desired. This may improve chunked delivery and may also provide additional error resilience as error concealment may be simplified if only single access units are lost.
	this is enabled by the source protocol which enables to specify the byte offset of the object in the packet header.

	Enable delivery of source content with no FEC semantics: In this case receivers that don’t implement/need/understand FEC can still receive the source stream. In addition, the same source stream can be easily mapped to multiple FEC configurations, e.g. different FEC schemes, different source block sizes, etc. This is in particular possible with systematic FEC codes such as the Raptor code defined TS26.346.
	this is enabled by reusing a specific version of the Compact no-FEC, but then use for FEC symbols a regular FEC scheme.

	Enable FEC object bundling: Provide FEC protection over multiple objects, which can increase the efficiency of FEC protection.
	This is supported by the super-object.

	Enable that delivered object contains all information of a complete HTTP GET response, i.e. the HTTP header and the HTTP GET response: In many cases the objects delivered through FLUTE are objects that are made available as resources on an http server/proxy/cache. FLUTE can very well be used to feed such HTTP caches, but it is preferable to have all information of a regular HTTP response included in the delivery of the object. Also objects may have certain live/availability times on caches. Signaling for this purpose may be necessary.
	This is supported by the entity header approach.

	Add timing information to FLUTE delivery: FLUTE packets are time agnostic. By adding timing to FLUTE packets, this enables temporal measurements, e.g. for jitter or delay measurements.
	this is supported by explicitly adding the EXT_TIME header in LCT.

	Reuse current standards, especially FLUTE, as much as possible: For example, it should allow delivery of standard FLUTE objects in same session with FDTs if backward compatibility is necessary.
	The proposal is a full reuse of ALC/LCT/FLUTE building blocks, Compact-No FEC as well as MBMS FEC. Also the MBMS signaling is largely reused.

6.2 Analysis Against Evaluation Criteria

A protocol that enhances FLUTE is expected to fulfil the following features:
	· Delivery of data objects over unidirectional transport to enable HTTP/1.1 similar functionalities

· Delivery of objects that are uniquely named by HTTP-URLs

· Provision of object properties along with the delivery of the object including Content-Type, Content-Encoding, size of extension headers, etc. without dependency on any other objects.
· Delivery and signaling of byte-ranges of a content object

· Chunked transfer of objects

· Enabling caching of objects
	all of these features are fulfilled by the above protocol.

	· reliable delivery of objects using existing error recovery methods

· by the support of application layer FEC

· by combining FEC protection for multiple objects

· without including/tying the source packets to a specific error recovery scheme
	all of these features are supported.

	· efficient and reliable support of object flows with timing real-time properties, in particular segmented DASH Representations within a Media Presentation of type dynamic, which includes:

· delivery of static information a priori in a reliable information

· bundling of dynamic information with the media object

· enable the support of timing information to the delivery
	all of these features are supported

	· provide generality without tying the base protocol to a specific application or media format
	supported. Integration in MBMS is necessary

	· provide extensibility and modularity
	supported by using XML, SDP and extension headers

	· enable optimizations for specific applications as well as objects and object flows, including

· application-driven packet sizes and packet fragmentation including signaling of functional properties in packet headers, e.g. random access points in a sense that any packet prior to a random access point is of no value for the application.

· DASH content, for example using predictive information in the MPD also in the signaling of the FLUTE+ protocol
	supported by various means

	In addition, a protocol that enhances FLUTE preferably provides the following features:

· efficiency in terms of packet overhead

· reasonable complexity

· compatibility to some FLUTE building blocks
	supported

7 Proposal

It is proposed to adopt sections 3, 4 and 5 as working assumptions for an enhanced FLUTE and use it as a baseline for further enhancements.
- 6/10 -

