Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-SA4 MBS Adhoc
S4-AHI292
11 July, 2012
update to S4-AHI291
Telco
Agenda item:
5
Source:
Qualcomm Incorporated, Expway
Title:
Proposed Test Plan for Device-based FEC Evaluation
Document for
Proposal and Approval

1 Introduction

From the evaluation of the self-verified results it is obvious that several candidates may provide an improvement to the existing MBMS FEC, especially in terms of transmission and receive overhead. The main open issues are the performance in a realistic service and end device environments, especially the performance on a mobile device. Indicative numbers have been provided with the submission, but for final selection of a single FEC more detailed numbers are necessary.
This document provides a test plan for testing device-based evaluation.
This document takes into account the initial considerations from S4-120877 and the agreements during the past calls.
The document is an update to S4-AHI291 with comments and co-signing from a second company. The updates are shown as markups.
It is proposed to use this test plan for rigorous device-based FEC evaluation. The test plan may still be modified in case open issues are detected. Known open items are specifically highlighted in yellow.

2 Test Cases
The following use cases are considered for performing (for details refer to TR26.247 v1.0.0).
LTE Download Delivery
Note that the file size shall be in derived with
· 1 kByte = 1024 Byte,
· 1 MByte = 1024 * 1024 Byte
· 1 GByte = 1024 * 1024 * 1024 Byte or 1000 * 1024 * 1024 Byte
	Test Case
	Error conditions
	Bitrate

kbit/s
	File size
	Repetition

	LD60
	Markov, 3 km/h, 20%
	1065.6
	HD (1.8 GB)
	4

	LD103
	Markov, 120 km/h, 1%
	1065.6
	Clip (3 MB)
	20

	LD104
	
	1065.6
	SD (128 MB)
	20

	LD105
	
	1065.6
	HD (1.8 GB)
	4

	LD108
	Markov, 120 km/h, 5%
	1065.6
	Clip (3 MB)
	20

	LD109
	
	1065.6
	SD (128 MB)
	20

	LD110
	
	1065.6
	HD (1.8 GB)
	4

	LD118
	Markov, 120 km/h, 20%
	1065.6
	Clip (3 MB)
	20

	LD119
	
	1065.6
	SD (128 MB)
	20

	LD120
	
	1065.6
	HD (1.8 GB)
	4

DASH-based Streaming Delivery over LTE
	Test Case
	Error conditions
	Segment
Duration
in seconds
	Bearer
Bitrate

kbit/s
	Duration

in seconds

	LS21
	Markov, 3 km/h, 20%
	1
	1065.6
	1800

	LS49
	
	2
	1065.6
	1800

	LS24
	
	4
	1065.6
	1800

	LS27
	Markov, 120 km/h, 1%
	1
	1065.6
	1800

	LS52
	
	2
	1065.6
	1800

	LS30
	
	4
	1065.6
	1800

	LS33
	Markov, 120 km/h, 5%
	1
	1065.6
	1800

	LS50
	
	2
	1065.6
	1800

	LS36
	
	4
	1065.6
	1800

	LS45
	Markov, 120 km/h, 20%
	1
	1065.6
	1800

	LS51
	
	2
	1065.6
	1800

	LS48
	
	4
	1065.6
	1800

Further Reduction of Test Cases

In order to execute all test cases in a reasonable amount of time, at most 24 hours, a subselection of the above test cases, or at least of the amount of repetitions should be considered. The reduction of test cases is expected to be done for the download delivery case as the real-time execution for streaming is around 6 hours.
3 Test Conditions & Test Procedure

Overview Test Platform and Operation Conditions
Figure 1 shows the considered test platform that is to be used.
[image: image1.png]
Figure 1 – Test Platform
Figure 1 may suggest that data would be transmitted from laptop to device and experience errors over the connection. Despite this may be considered conceptually, in practice a local procedure on the PC is applied to go from the original PCAP file to an errored PCAP file.
Download Delivery
Summary Test Cases
The following test case parameters are specified:

· T’ is the FEC payload size. Typically T’ also represents the symbol size unless multiple symbols are added

· Kt is the total number of source symbols

· Z is the total number of source blocks

· O is the overhead in percent according to the table provided by the proponents

· N is the resulting number of total symbols defined as Kt*(1+O/100)

· The code specific FEC-OTI, e.g. the sub-blocking parameters

· SeSt is the sending strategy with IL = Interleaved, n/a not applicable and SQ sequential

It is further expected that of the Z source blocks

· the first Z1 have source block size K1 = ceil(Kt/Z)

· the remaining Z2 have source block size K2 = floor(Kt/Z)

· and Z1 = Kt – K2*Z and Z2=Z-Z1.
Table 1 Parameters for Download Test Case

	Common
	Code-Specific 6330

	Test Case
	Error conditions
	File size FS
	T’
	Kt
	Z
	OTI
	O
	N
	SeSt

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	1288
	1500571
	53
	
	26.85
	1903474
	IL

	LD103
	Markov, 120km/h, 1%
	Clip (3 MB)
	1288
	2443
	1
	
	
	
	n/a

	LD104
	
	SD (128 MB)
	1288
	104207
	4
	
	
	
	IL

	LD105
	
	HD (1.8 GB)
	1288
	1500571
	53
	
	
	
	IL

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	1288
	2443
	1
	
	6.92
	2612
	n/a

	LD109
	
	SD (128 MB)
	1288
	104207
	4
	
	6.25
	110720
	IL

	LD110
	
	HD (1.8 GB)
	1288
	1500571
	53
	
	6.30
	1595106
	IL

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	1288
	2443
	1
	
	28.80
	3147
	n/a

	LD119
	
	SD (128 MB)
	1288
	104207
	4
	
	27.35
	132708
	IL

	LD120
	
	HD (1.8 GB)
	1288
	1500571
	53
	
	27.50
	1913228
	IL

Generate FLUTE Packet Test Streams

Process

Apply the following actions on the host

· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LSX according to Table 1
· generate segments and MD5

· split the file into 1 file of size FS
· create the MD5 for the file
· the shell script in section 6.1 can be used for this purpose. It creates as output the TOI number as well as the MD5 for the file.
· FEC encode to PCAP file as follows
· Put FDT for the file in first packet specifying at least the following parameters

· TOI

· FEC-OTI

Note: Content-Location and Content-Length may not be added as they are not necessary. Transfer-Length in the FEC-OTI is sufficient.
· encode file into ALC/LCT packets using the test case parameters according to Table 1 for the candidate

· source block size and source blocking based on Kt and Z (see section 3.2.1)
· number of transmitted symbols N,

· symbol size T,
· source block interleaving

· sub-blocking parameters
Note: End of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.
· provide packets with UDP payload size according to Table 1. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.
· include the appropriate timing for the real-time bitrate, i.e. 1 packet every time period according to the packet interval in Table 1.

Output

The output from this process is, for each test case:

· TOI and MD5 for the file. Note that the TOI and MD5 are not code specific.
· PCAP file that contains encoded file preceded with an FDT. The PCAP file name for an example code with code name X is provided in Table 2 along with the total number of packets. It is expected that these PCAP files are provided for verification and also as test vectors to be added to the technical report.
Table 2 PCAP files and Segment List for a virtual code X
	Test Case
	Error conditions
	PCAP file
	Number of Packets
	MD5 file

	LD60
	Markov, 3km/h, 20%
	ld60_codeX.pcap
	1903474
	ld60.md5

	LD103
	Markov, 120km/h, 1%
	ld103_codeX.pcap
	2612
	ld103.md5

	LD104
	
	ld104_codeX.pcap
	110720
	ld104.md5

	LD105
	
	ld105_codeX.pcap
	1595106
	ld05.md5

	LD108
	Markov, 120km/h, 5%
	ld108_codeX.pcap
	2612
	ld108.md5

	LD109
	
	ld109_codeX.pcap
	110720
	ld109.md5

	LD110
	
	ld110_codeX.pcap
	1595106
	ld110.md5

	LD118
	Markov, 120km/h, 20%
	ld118_codeX.pcap
	3147
	ld118.md5

	LD119
	
	ld119_codeX.pcap
	132708
	ld119.md5

	LD120
	
	ld120_codeX.pcap
	1913228
	ld120.md5

Generate Erroneous Packet Streams

LTE Traces

Several LTE Error Trace are provided for each test case in the attached package. The files are named error_trace_ld<testcase>_<trno>.txt. The details are summarized in Table 3.

The format of the error traces is as follows

<Number N of loss/received events in ASCII>[newline]

[0|1]{N,N}

where N is the maximum number of packets that the input PCAP file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length N.

Table 3 Error traces for download test cases with losses and loss statistics. These are accumulated.
	Test Case
	Error conditions
	File size
	S
	PCAP file
	Length N
	Losses
	Loss Percentage

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	4
	error_trace_ld60_<trno>.txt
	2000000
	1617032
	20.21

	LD103
	Markov, 120km/h, 5%
	Clip (3 MB)
	20
	error_trace_ld103_<trno>.txt
	2700
	609
	1.13

	LD104
	
	SD (128 MB)
	20
	error_trace_ld104_<trno>.txt
	112000
	24567
	1.10

	LD105
	
	HD (1.8 GB)
	4
	error_trace_ld105_<trno>.txt
	1610000
	70366
	1.09

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	20
	error_trace_ld108_<trno>.txt
	2700
	2946
	5.46

	LD109
	
	SD (128 MB)
	20
	error_trace_ld109_<trno>.txt
	112000
	122389
	5.46

	LD110
	
	HD (1.8 GB)
	4
	error_trace_ld110_<trno>.txt
	1610000
	351658
	5.46

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	20
	error_trace_ld118_<trno>.txt
	3200
	13149
	20.55

	LD119
	
	SD (128 MB)
	20
	error_trace_ld119_<trno>.txt
	134000
	559152
	20.86

	LD120
	
	HD (1.8 GB)
	4
	error_trace_ld120_<trno>.txt
	2000000
	1667305
	20.84

A process for generating the error traces independently is provided in section 6.2.
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a slightly modified version of tcprewrite (part of the tcpreplay suite) is available and attached in the package. This tool takes a pcap file as input and transforms it into another altered pcap. The modified tcprewrite has new options:

 -t, --tracefile=str Input loss/no-loss trace file

where the format of the trace file is according to the format introduced in section 3.3.3.1.

A process for generating the modified independently is provided in section 6.2.

The pcap for transmission may be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ifconfig usb0’, e.g.:

$ ifconfig usb0

usb0 Link encap:Ethernet HWaddr 3e:b0:fd:5a:85:b5

 inet addr:192.168.42.252 Bcast:192.168.42.255 Mask:255.255.255.0

 inet6 addr: fe80::3cb0:fdff:fe5a:85b5/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:32 errors:0 dropped:0 overruns:0 frame:0

 TX packets:113 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3090 (3.0 KB) TX bytes:23413 (23.4 KB)

where hardware and IP addresses are 3e:b0:fd:5a:85:b5 and 192.168.42.252 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.

With the information above and for each test case LDY in Table 7 and each seed, the following process is applied:

./tcprewrite --distip=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcip=0.0.0.0/0:192.168.42.252 --enet-smac= 3e:b0:fd:5a:85:b5 --fixcsum -i ldY_codeX.pcap -t errortrace_ldY_<seed>.txt -x 1 -o ldY_codeX_ldY_<trno>.pcap
Note that the integration of the Ethernet and IP addresses is optional and may only be done absence of any other knowledge.
Output

The outputs of this process are S PCAP file for each test case. The PCAP files are summarized in Table 10. The length of the PCAP file depends on the loss statistics.
Table 4 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	File size
	S
	PCAP file
	Total Number of Packets

	LD60
	Markov, 3km/h, 20%
	HD (1.8 GB)
	4
	ld60_codeX_ld60_<trno>.txt
	

	LD103
	Markov, 120km/h, 1%
	Clip (3 MB)
	20
	ld103_codeX_ld103_<trno>.txt
	

	LD104
	
	SD (128 MB)
	20
	ld104_codeX_ld104_<trno>.txt
	

	LD105
	
	HD (1.8 GB)
	4
	ld105_codeX_ld105_<trno>.txt
	

	LD108
	Markov, 120km/h, 5%
	Clip (3 MB)
	20
	ld108_codeX_ld108_<trno>.txt
	

	LD109
	
	SD (128 MB)
	20
	ld109_codeX_ld109_<trno>.txt
	

	LD110
	
	HD (1.8 GB)
	4
	ld110_codeX_ld110_<trno>.txt
	

	LD118
	Markov, 120km/h, 20%
	Clip (3 MB)
	20
	ld118_codeX_ld118_<trno>.txt
	

	LD119
	
	SD (128 MB)
	20
	ld119_codeX_ld119_<trno>.txt
	

	LD120
	
	HD (1.8 GB)
	4
	ld120_codeX_ld120_<trno>.txt
	

Generate Device Performance Measures

Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.
· Samsung MB-MSBGA Flash memory card - 32 GB microSDHC - 1 x microSDHC SD Card (Class 10) – available on Amazon

· Root access is applied to the device, for details see section 6.4.
· network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. For details on functionalities, see section 3.2.4.2.1.
· decoder -o download executable for FEC decoding based on data on the SD card of the device and for writing subblock data to SD card. For details on functionalities, see section 3.2.4.2.2.

· push the Unix 'time' command on the device, for details see section 6.5.

· The host PC

· can be any OS, but typically Linux or Windows

· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name usb0.

· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see section 6.7. In the following it is assumed that tcpreplay is available.

· The details of connecting device and host PC are provided in section 6.6.
Code-specific Tools

Read from network and write to SD

The network2sd executable for reading packets from network interface and writing it in a suitable manner to the SD card in order optimize reading while decoding. The network2sd writes some information to stdout, which is used by decoder as input to locate the relevant information.
Decoding from and to SD card
The decoder -o download executable receives reads input data from SD card and writes it back to SD card sub-block by sub-block. The decoder receives information from the network2sd process in order to locate the relevant data.
Process

For each test case LDX from Table 1 and each <trno>, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/local/tmp:
1. adb shell

2. cd /data/local/tmp/
3. time -v network2sd info.txt
4. cat info.txt | time -v decoder -o download 2> time.txt
5. (generate md5 and TOI > out.txt)
· On the host start the following process

tcpreplay --intf1=usb0 ldY_codeX_ldY_<trno>.pcap
· After termination at the device, the following is carried out

adb pull /data/local/tmp/out.txt out.txt ldY_codeX_ldY_<trno>.out

adb pull /data/local/tmp/time.txt ldY_codeX_ldY_<trno>.time

Error Free Process

In order to understand the influence of supplementary processes to the FEC decoding, the same process as described in 3.2.4.3 may carried out for the error-free pcap files. To do so, all files ldY_codeX_ldY_<trno>.* are replaces by ldY_codeX.*.
Note that this process is optional for the proponent and may be done only in the verification.
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 5.
Table 5 Performance and result file for a virtual code X after decoding

	Test Case
	Error-Free Performance (optional)
	S
	Result
	Performance

	LD60
	ls21_codeX.time
	4
	ld60_codeX_ld60_<trno>.out
	ld60_codeX_ld60_<trno>.time

	LD103
	ls49_codeX.time
	20
	ld108_codeX_ld108_<trno>.out
	ld108_codeX_ld108_<trno>.time

	LD104
	ls24_codeX.time
	20
	ld109_codeX_ld109_<trno>.out
	ld109_codeX_ld109_<trno>.time

	LD105
	ls33_codeX.time
	4
	ld110_codeX_ld110_<trno>.out
	ld110_codeX_ld110_<trno>.time

	LD108
	ls49_codeX.time
	20
	ld108_codeX_ld108_<trno>.out
	ld108_codeX_ld108_<trno>.time

	LD109
	ls24_codeX.time
	20
	ld109_codeX_ld109_<trno>.out
	ld109_codeX_ld109_<trno>.time

	LD110
	ls33_codeX.time
	4
	ld110_codeX_ld110_<trno>.out
	ld110_codeX_ld110_<trno>.time

	LD118
	ls50_codeX.time
	20
	ld118_codeX_ld118_<trno>.out
	ld118_codeX_ld118_<trno>.time

	LD119
	ls36_codeX.time
	20
	ld119_codeX_ld119_<trno>.out
	ld119_codeX_ld119_<trno>.time

	LD120
	ls45_codeX.time
	4
	ld120_codeX_ld120_<trno>.out
	ld120_codeX_ld120_<trno>.time

Evaluation

General
After all test cases are completed the output files as presented in Table 13 are available. These files are moved back to the host for evaluation.

Correct Decoding

To verify that decoding was successful for each test case or to identify the number of unsuccessful attempts, the result files ldY_codeX_ldY_<trno>.out are collected and for each one it is compared if the TOI and MD5 is identical with ldY.md5. If not identical, one error event is recorded.
Performance Evaluation

The output will then be akin to the following:

 Command being timed: "decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36
 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456
 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0
The relevant entries here are "system time", "user time" (the sum of which is to be reported as the processing cost), and "Maximum resident set size". The memory usage to be reported is 1/4 of that given as the "Maximum resident set size" in an unpatched busybox 1.20.1. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)

· S: System time (seconds)

· P: Percent of CPU this job got

· W: Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)

· Generate the following numbers for performance evaluation based on the above results and the object size F (in bytes) for each test case and seed:
· Speed: Average decoding speed (in MBit/s): F*8/(1000000*(U+S))
· Time1: Decoding time (in s): U+S
· Time2: weighted elapsed time (in s): P*W/100

· Memory: Peak memory usage (in MBytes): M/4096

Performance Documentation

The following values are to be reported for each test case be using the results from each trno = 0, ..., S-1 and the error free decoding:
· Np the total number of packets used for decoding

· E the total number of file delivery attempts that failed (should be 0)

· AvSpeed the average speed over all S decoding attempts

· AvTime1 the average decode time over all S decoding attempts
· AvTime2 the weighted elapsed time over all S decoding attempts

· MinSpeed the minimum speed over all S decoding attempts

· MaxTime1 the maximum decoding over all S decoding attempts
· MaxTime2 the weighted elapsed time over all S decoding attempts

· MaxMem the maximum memory over all S decoding attempts

· EfSpeed the speed for error-free decoding attempt

· EfTime1 the Time for error-free decoding attempt

· EfTime2 the Time for error-free decoding attempt

· EfMem the Memory for error-free decoding attempt
Table 6 Performance Data for Download Delivery Test Cases

	Test Case
	S
	Np
	E
	AvSpeed
(MBit/s)
	AvTime1

(sec)
	AvTime2

(sec)
	MinSpeed
(MBit/s)
	MaxTime2
(sec)
	MaxTime2
(sec)
	MaxMem
(MByte)
	EfSpeed
(MBit/s)
	EfTime1
(sec)
	EfTime2
(sec)
	EfMem
(MByte)

	LD60
	4
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD103
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD104
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD105
	4
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD108
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD109
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD110
	4
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD118
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD119
	20
	
	
	
	
	
	
	
	
	
	
	
	
	

	LD120
	4
	
	
	
	
	
	
	
	
	
	
	
	
	

Streaming Delivery

Summary Test Cases
Table 7 Parameters for Streaming Test Case

	Common Parameters
	Code-specific Parameters

	Test Case
	Error conditions
	Segment Duration
	T’
	N’
	Packet Interval
	Number Segments Y
(time=30min)
	G
	K
	Segment
Size S
	Media
Rate

	LS21
	Markov, 3km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	37
	47656
	381.25

	LS49
	
	2s
	1288
	200
	10ms
	900
	1
	103
	132664
	530.66

	LS24
	
	4s
	1288
	400
	10ms
	450
	1
	246
	316848
	633.70

	LS27
	Markov, 120km/h, 1%
	1s
	1288
	100
	10ms
	1800
	1
	
	
	

	LS52
	
	2s
	1288
	200
	10ms
	900
	1
	
	
	

	LS30
	
	4s
	1288
	400
	10ms
	450
	1
	
	
	

	LS33
	Markov, 120km/h, 5%
	1s
	1288
	100
	10ms
	1800
	1
	85
	109480
	875.84

	LS50
	
	2s
	1288
	200
	10ms
	900
	1
	178
	229264
	917.06

	LS36
	
	4s
	1288
	400
	10ms
	450
	1
	364
	468832
	937.66

	LS45
	Markov, 120km/h, 20%
	1s
	1288
	100
	10ms
	1800
	1
	64
	82432
	659.46

	LS51
	
	2s
	1288
	200
	10ms
	900
	1
	139
	179032
	716.13

	LS48
	
	4s
	1288
	400
	10ms
	450
	1
	291
	374808
	749.62

Generate FLUTE Packet Test Streams

Process

Apply the following actions on the host

· Download the following file http://media.xiph.org/ED/ed-pixlet.mov
· for each test case LSX according to Table 7
· generate segments and MD5

· split the file in to Y segments, each of size S

· create the MD5 for each of the segments and create a file that lists the TOI and the MD5
· the shell script in section 6.1 can be used for this purpose. It creates as output the segment number as well as the MD5 for the segment
· FEC encode to PCAP file as follows:
· Provide FDT for each segment just before first packet of a segment specifying at least the following parameters
· TOI

· FEC-OTI
Note:

· Content-Location and Content-Length are not added as they are not necessary. Transfer Encoding is sufficient.

· encode each segment sequentially with increasing TOI numbers 1 ... N into ALC/LCT packets using the test case parameters according to Table 7 for the candidate
· number of source symbols K,

· number of transmitted symbols N,

· symbol size T,

· sub-blocking parameters if needed
Note: End of session and end of object transmission signalling may be used by setting the A and B flag in the LCT header.
· for all ALC/LCT packets with TOI not equal to 0,

· provide packets with UDP payload size according to Table 7. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.
· If in doubt or unclear what to use, include the timing for the real-time bitrate, i.e. 1 packet every according to the packet interval in Table 7.
· for all ALC/LCT packets with TOI equal to 0, i.e. FDT packets

· provide packets with UDP payload size according to Table 7. The ALC/LCT/UDP/IPv4 header is in total 44 bytes.

· If in doubt or unclear what to use, include a timing that is 50% of the packet interval in Table 7 earlier than the one in the first packet of the object with the TOI included in this FDT.
Output

The output from this process is for each test case:

· File that contains TOI and MD5 for each of the segments
· PCAP file that contains a sequence of segments prefixed with a single multi-packet FDT that summarizes the entire sequence. The PCAP file name for a code with code name X is provided in Table 8 along with the total number of packets
Table 8 PCAP files and Segment List for a virtual code X

	Test Case
	Error conditions
	PCAP file
	Number of Data Packets
	Segment list

	LS21
	Markov, 3km/h, 20%
	ls21_codeX.pcap
	180000
	ls21.md5

	LS49
	
	ls49_codeX.pcap
	180000
	ls49.md5

	LS24
	
	ls24_codeX.pcap
	180000
	ls24.md5

	LS27
	Markov, 120km/h, 1%
	ls27_codeX.pcap
	180000
	ls27.md5

	LS52
	
	ls52_codeX.pcap
	180000
	ls52.md5

	LS30
	
	ls30_codeX.pcap
	180000
	ls30.md5

	LS33
	Markov, 120km/h, 5%
	ls33_codeX.pcap
	180000
	ls33.md5

	LS50
	
	ls50_codeX.pcap
	180000
	ls50.md5

	LS36
	
	ls36_codeX.pcap
	180000
	ls36.md5

	LS45
	Markov, 120km/h, 20%
	ls45_codeX.pcap
	180000
	ls45.md5

	LS51
	
	ls51_codeX.pcap
	180000
	ls51.md5

	LS48
	
	ls48_codeX.pcap
	180000
	ls48.md5

Generate Erroneous Packet Streams

LTE Traces

One LTE Error Trace is provided for each test case in the attached package. The files are named error_trace_ls<testcase>.txt. The details are summarizes in Table 9.
The format of the error traces is as follows

<Number N of loss/received events in ASCII>[newline]

[0|1]{N,N}

where N is the maximum number of packets that the input pcap file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length N.

Table 9 Error traces for streaming test cases with losses and loss percentage
	Test Case
	Error conditions
	Error Trace
	Length N
	Losses
	Loss Percentage

	LS21
	Markov, 3km/h, 20%
	errortrace_ls21.txt
	180000
	36730
	20.41

	LS49
	
	errortrace_ls49.txt
	180000
	36730
	20.41

	LS24
	
	errortrace_ls24.txt
	180000
	36730
	20.41

	LS27
	Markov, 120km/h, 1%
	errortrace_ls27.txt
	180000
	1995
	1.11

	LS52
	
	errortrace_ls52.txt
	180000
	1995
	1.11

	LS30
	
	errortrace_ls30.txt
	180000
	1995
	1.11

	LS33
	Markov, 120km/h, 5%
	errortrace_ls33.txt
	180000
	9799
	5.44

	LS50
	
	errortrace_ls50.txt
	180000
	9799
	5.44

	LS36
	
	errortrace_ls36.txt
	180000
	9799
	5.44

	LS45
	Markov, 120km/h, 20%
	errortrace_ls45.txt
	180000
	37663
	20.92

	LS51
	
	errortrace_ls51.txt
	180000
	37663
	20.92

	LS48
	
	errortrace_ls48.txt
	180000
	37663
	20.92

A process for generating the error traces independently is provided in section 6.2.
Apply to LTE traces to PCAP streams

In order to introduce loss into a controlled manner to the PCAP files using the Markov error traces, a slightly modified version of tcprewrite (part of the tcpreplay suite) is available and attached in the package. This tool takes a pcap file as input and transforms it into another altered pcap. The modified tcprewrite has one new option:

 -t, --tracefile=str Input loss/no-loss trace file

where the format of the trace file is according to the format introduced in section 3.3.3.1. Note that the tool as identifies FDT packets (i.e. TOI 0) and passes these through directly without applying the error trace.
A process for generating the modified tcprewrite independently is provided in section 6.2.
The pcap for transmission must be prepped with the right MAC/IP addresses for both sender and receiver. On the sender side MAC and IP can be obtained with command ‘ifconfig usb0’, e.g.:
$ ifconfig usb0

usb0 Link encap:Ethernet HWaddr 3e:b0:fd:5a:85:b5

 inet addr:192.168.42.252 Bcast:192.168.42.255 Mask:255.255.255.0

 inet6 addr: fe80::3cb0:fdff:fe5a:85b5/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:32 errors:0 dropped:0 overruns:0 frame:0

 TX packets:113 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:1000

 RX bytes:3090 (3.0 KB) TX bytes:23413 (23.4 KB)

where hardware and IP addresses are 3e:b0:fd:5a:85:b5 and 192.168.42.252 respectively. On the receiver side a multicast IP address and associated MAC could be 230.20.20.10 and 01:00:5e:66:14:14:0a.
With the information above and for each test case LSY in Table 7, the following process is applied:
./tcprewrite --distip=0.0.0.0/0:230.20.20.10 --enet-dmac= 01:00:5e:66:14:14:0a --srcip=0.0.0.0/0:192.168.42.252 --enet-smac= 3e:b0:fd:5a:85:b5 --fixcsum -i lsY_codeX.pcap -t errortrace_lsY.txt -x 1 -o lsY_codeX_lsY.pcap
Note that the integration of the Ethernet and IP addresses is optional and may only be done absence of any other knowledge.
Output

The output of this process is one PCAP file for each test case. The PCAP files are summarized in Table 10. The length of the PCAP file depends on the loss statistics.
Table 10 PCAP files for a virtual code X after applying channel that maps to specific channel model

	Test Case
	Error conditions
	Error Trace
	Number of Packets

	LS21
	Markov, 3km/h, 20%
	ls21_codeX_ls21.pcap
	

	LS49
	
	ls49_codeX_ls49.pcap
	

	LS24
	
	ls24_codeX_ls24.pcap
	

	LS27
	Markov, 120km/h, 1%
	ls33_codeX_ls27.pcap
	

	LS52
	
	ls50_codeX_ls52.pcap
	

	LS30
	
	ls36_codeX_ls30.pcap
	

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.pcap
	

	LS50
	
	ls50_codeX_ls50.pcap
	

	LS36
	
	ls36_codeX_ls36.pcap
	

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.pcap
	

	LS51
	
	ls51_codeX_ls51.pcap
	

	LS48
	
	ls48_codeX_ls48.pcap
	

Generate Device Performance Measures
Setup

The following device/operating conditions are used:

· Device

· Samsung Galaxy S2 (GT-I9100) Smartphone, running Android 4.0.3. The processor is a Dual-core Exynos 4210 1.2GHz processor ARM Cortex-A9.
· Root access is applied to the device, for details see section 6.4.
· decoder -streaming executable for FEC decoding available on the device, for details on functionalities, see section 3.3.4.2.

· verifysegm executable for generating packets from network interface and push the payload to stdout with size of payload and content. For details on functionalities, see section 6.8.

· push the Unix 'time' command on the device, for details see section 6.5.
· The host PC

· can be any OS, but typically Linux or Windows
· The host PC is connected to the Device using USB tethering through an interface. It is assumed that the interface has assigned name usb0.
· the host does have a functionality installed that permits to push the stored PCAP files to the device. For details, see section 6.7. In the following it is assumed that tcpreplay is available.

· The details of connecting device and host PC are provided in section 6.6.
Decoder

The decoder executable receives its input data via the network interface card (UDP/ALC/LCT packets) and writes on stdout decoded source block.

If correction of the segment is successful, this application writes on stdout:

[<segment identifier> | length (16-bit) | <sequence of segment bytes>]
where <segment identifier> is a segment identifier (either TOI or segment name) followed by the length of the decoded segment in bytes and the actual recovered segment data. The TOI, if provided, and length are in network-byte order.
Process

For each test case LSX from Table 7, the following processes are carried out in the following sequence:

· On the device start the following process in directory /data/local/tmp:
1. adb shell

2. cd /data/local/tmp/

3. time -v decoder -o streaming | time -v verifysegm > out.txt 2> time.txt

· On the host start the following process
tcpreplay --intf1=usb0 lsY_codeX_lsY.pcap
· After termination at the device, the following is carried out on the host:
adb pull /data/local/tmp/out.txt lsY_codeX_lsY.out

adb pull /data/local/tmp/time.txt lsY_codeX_lsY.time
Error-Free Process

The same process as described in 3.3.4.3 is carried out for the error-free pcap files. To do so, all files lsY_codeX_lsY.* are replaces by lsY_codeX.*.
Output

The output of this process is one performance file and one result file for each test case. The files are summarized in Table 13.
Table 11 Performance and result file for a virtual code X after decoding
	Test Case
	Error conditions
	Result
	Performance
	Error-Free Performance

	LS21
	Markov,
3km/h, 20%
	ls21_codeX_ls21.out
	ls21_codeX_ls21.time
	ls21_codeX.time

	LS49
	
	ls49_codeX_ls49.out
	ls49_codeX_ls49.time
	ls49_codeX.time

	LS24
	
	ls24_codeX_ls24.out
	ls24_codeX_ls24.time
	ls24_codeX.time

	LS27
	Markov, 120km/h, 1%
	ls33_codeX_ls27.out
	ls27_codeX_ls27.time
	ls27_codeX.time

	LS52
	
	ls50_codeX_ls52.out
	ls52_codeX_ls52.time
	ls52_codeX.time

	LS30
	
	ls36_codeX_ls30.out
	ls30_codeX_ls30.time
	ls30_codeX.time

	LS33
	Markov, 120km/h, 5%
	ls33_codeX_ls33.out
	ls33_codeX_ls33.time
	ls33_codeX.time

	LS50
	
	ls50_codeX_ls50.out
	ls50_codeX_ls50.time
	ls50_codeX.time

	LS36
	
	ls36_codeX_ls36.out
	ls36_codeX_ls36.time
	ls36_codeX.time

	LS45
	Markov, 120km/h, 20%
	ls45_codeX_ls45.out
	ls45_codeX_ls45.time
	ls45_codeX.time

	LS51
	
	ls51_codeX_ls51.out
	ls51_codeX_ls51.time
	ls51_codeX.time

	LS48
	
	ls48_codeX_ls48.out
	ls48_codeX_ls48.time
	ls48_codeX.time

Evaluation

General
After all test cases are completed the output files as presented in Table 11 are available. These files are moved back to the host for evaluation.
Correct Decoding

To verify that decoding was successful for each test case or to identify the number of lost segments, the following command is executed which prints the number of erroneous segments E:
diff lsY_codeX.md5 lsY_codeX(_lsY).out | awk 'END { print NR/2 }'

Performance Evaluation
The output of lsY_codeX(_lsY).time will be something like this:

 Command being timed: "decoder"

 User time (seconds): 1.49

 System time (seconds): 0.36
 Percent of CPU this job got: 73%

 Elapsed (wall clock) time (h:mm:ss or m:ss): 0m 2.52s

 Average shared text size (kbytes): 0

 Average unshared data size (kbytes): 0

 Average stack size (kbytes): 0

 Average total size (kbytes): 0

 Maximum resident set size (kbytes): 165456
 Average resident set size (kbytes): 0

 Major (requiring I/O) page faults: 1

 Minor (reclaiming a frame) page faults: 21740

 Voluntary context switches: 9659

 Involuntary context switches: 10442

 Swaps: 0

 File system inputs: 0

 File system outputs: 0

 Socket messages sent: 0

 Socket messages received: 0

 Signals delivered: 0

 Page size (bytes): 4096

 Exit status: 0

The relevant entries here are system time, user time (the sum of which is to be reported as the processing cost), and Maximum resident set size. The memory usage to be reported is 1/4 of that given as the Maximum resident set size in an unpatched busybox 1.20.1. The reason for this division by 4 is that busybox has a bug which causes it to overestimate memory usage by a factor of 4, just like the GNU time utility from which it is presumably inheriting this mistake. See the bug report here
.

The following performance data measurement is proposed:

· Generate the numbers from above for the considered test case

· Generate the numbers from above for a zero loss trace

· Report the following numbers for each test case and the zero loss trace:

· U: User time (seconds)
· S: System time (seconds)
· P: Percent of CPU this job got
· Elapsed (wall clock) time (h:mm:ss or m:ss):

· M: Maximum resident set size (kbytes)
· Generate the following numbers for performance evaluation based on the above results and the segment duration D (in seconds), the media bitrate R (in kBit/s), and the duration of the media data t (in seconds):

· Speed: Average decoding speed (in MBit/s): R*t/(1000*(U+S))

· Latency: Average decoding latency (in ms): D*(1000*(U+S))/t
· Memory: Peak memory usage (in MBytes): M/4096
Performance Documentation
The performance should be documented according to Table 12. The right three columns document the performance for error-free transmission.
Table 12 Performance Data for Streaming Test Cases

	Test Case
	Error conditions
	G
	K
	E
	Speed (MBit/s)
	Latency (ms)
	Memory (MByte)
	EF-Speed (MBit/s)
	EF-Latency (ms)
	EF-Memory (MByte)

	LS21
	Markov, 3km/h, 20%
	
	
	
	
	
	
	
	
	

	LS49
	
	
	
	
	
	
	
	
	
	

	LS24
	
	
	
	
	
	
	
	
	
	

	LS27
	Markov, 120km/h, 1%
	
	
	
	
	
	
	
	
	

	LS52
	
	
	
	
	
	
	
	
	
	

	LS30
	
	
	
	
	
	
	
	
	
	

	LS33
	Markov, 120km/h, 5%
	
	
	
	
	
	
	
	
	

	LS50
	
	
	
	
	
	
	
	
	
	

	LS36
	
	
	
	
	
	
	
	
	
	

	LS45
	Markov, 120km/h, 20%
	
	
	
	
	
	
	
	
	

	LS51
	
	
	
	
	
	
	
	
	
	

	LS48
	
	
	
	
	
	
	
	
	
	

4 Attachments

The following files are attached to this test plan:
· Markov-Error-traces.zip: A packet to generate the relevant Markov error traces.
· tcprewrite-markov.zip: Package that includes a tcprewrite functionality to generate PCAP traces with losses according to a Markov trace.
5 Verification Process
A process for verification of the provided results needs to be defined.
On a high-level, it seems that by each proponent providing

· the decoder and possibly some read/write utilities executable for Android with the appropriate I/O interfaces,

· error free pcap traces for the different test case

verification based on the available tools can be done independently.

More details will be defined in the next stage.

Annex:

6 Tools

Split file into segments and generate MD5
This Unix script creates <total> smaller segments, each of size <bytes> from file <file> and names the segments with <prefix>_08%d.
#!/bin/sh

Created on 7/2/12.

Split large file segments and create md5
if [$# -eq 4]

then

 rm $3*

 split -b $1 $2 $3

 j=0

 for i in `ls -1 $3*`;

 do

 j=`expr $j + 1`;

 if [$j -le $4]

 then

 x=`echo $3 $j | awk '{ printf ("%s%08d", $1, $2) }'`

 mv $i $x;

 echo $j '\c'

 md5 -q $x

 else

 rm $i

 fi

 done

else

 echo $# 'usage: split_with_numbers.sh <bytes> <file> <prefix> <total>'

fi
Generate Markov Traces
Binary executable "markovtrace" as well as pseudo code for the Markov Trace is provided in the attached package. The markov trace file can be executed as follows:

./markovtrace -p | -c <lossrate> <seed> <length> <tracefile> [<offset>]
with:

· -p stands for pedestrian, i.e. 3 km/h, -c for car, i.e. 120 km/h

· lossrate the loss rate in %. Valid numbers are 1, 5, 10, 20

· seed is the seed of the random generator

· length is the size of the loss trace

· tracefile is the name of the trace file that is created
· (optional) offset indicates to start recording the trace at this location instead of at the beginning.

Table 13 provides the instructions how to generate the error traces for the streaming test cases.

In addition, package attached to this test plan includes a shell script which generates the different error traces in ld-ls-error-traces.sh. It also includes for verification:

· the MD5 of all error traces in error_trace_ld_ls-md5.txt
· the details of the number of the total and lost packets for each error trace in result.txt.
Table 13 Markov Trace generation for streaming test cases

	Test Case
	Error conditions
	Test Script execution

	LS21
	Markov, 3km/h, 20%
	./markovtrace -p 20 0 180000 errortrace_ls21.txt

	LS49
	
	./markovtrace -p 20 0 180000 errortrace_ls49.txt

	LS24
	
	./markovtrace -p 20 0 180000 errortrace_ls24.txt

	LS27
	Markov, 120km/h, 1%
	./markovtrace -c 1 0 180000 errortrace_ls27.txt

	LS52
	
	./markovtrace -c 1 0 180000 errortrace_ls52.txt

	LS30
	
	./markovtrace -c 1 0 180000 errortrace_ls30.txt

	LS33
	Markov, 120km/h, 5%
	./markovtrace -c 5 0 180000 errortrace_ls33.txt

	LS50
	
	./markovtrace -c 5 0 180000 errortrace_ls50.txt

	LS36
	
	./markovtrace -c 5 0 180000 errortrace_ls36.txt

	LS45
	Markov, 120km/h, 20%
	./markovtrace -c 20 0 180000 errortrace_ls45.txt

	LS51
	
	./markovtrace -c 20 0 180000 errortrace_ls51.txt

	LS48
	
	./markovtrace -c 20 0 180000 errortrace_ls48.txt

Modified TCPrewrite

General
In order to introduce loss into a controlled manner reusing the loss traces used for the LD and LS simulations, a slightly modified version of tcprewrite (part of the tcpreplay suite) is available. This tool takes a pcap file as input and transforms it into another altered pcap. The modified tcprewrite has new options:

 -t, --tracefile=str Input loss/no-loss trace file

where the format of the trace file is:

<Number N of loss/received events in ASCII>[newline]

[0|1]{N,N}

where N will be the maximum number of packets that the input pcap file may have followed on the next line with a string made of characters ‘0’ (packet received) and ‘1’ (packet is lost) of length N.

The customized tcprewrite also includes the functionality that ALC/LCT packets with TOI equal to 0 are not dropped.

How to build

Source URL: http://prdownloads.sourceforge.net/tcpreplay/tcpreplay-3.4.4.tar.gz?download
Patch URL: attached to this document tcprewrite-fdt-timestamp-patch.txt included in the attached package tcprewrite-markov.zip.

Required libraries, tools:

· libpcap

· aclocal (tested with 1.11.3)

· autogen (tested with 1.11.3)

· m4 (tested with 1.4.6)

· patch (tested with 2.5.8)

Build steps are:

1. untar/gunzip file tcpreplay-3.4.4.tar.gz in working directory containing also the patch file tcprewrite-markov-patch.txt.

2. Apply patch: from the same directory, execute:

a. patch –p0 < tcprewrite-fdt-timestamp-patch.txt
3. In directory tcpreplay-3.4.4 execute:

a. aclocal

b. autogen

c. ./configure

d. make

Root access for Galaxy S2
Here's one procedure to root the S2:
· http://galaxys2root.com/galaxy-s2-root/how-to-root-galaxy-s2-newworks-on-all-galaxy-s2-variants/

· http://www.androidauthority.com/root-galaxy-s2-i9100-xxlp2-firmware-48433/

Once the phone is rooted, to turn on performance mode and disable the second CPU core:

· cd /sys/devices/system/cpu/cpu0/cpufreq

· cat scaling_governor

· this will tell the current mode (on-demand or performance)

· echo performance > scaling_governor

· turn on performance mode. echo ondemand to turn off
· NOT a sticky command i.e. value resets to ondemand after reset

· note: performance mode will keep it at 1.5GHz, even at idle

· In ondemand mode - at idle, without a data transfer or anything else running on the device, cpu0 should be running at much lower speed

· cat scaling_cur_freq

· display current clock frequency in kHz

· cd /sys/devices/system/cpu/cpu1/cpufreq

· to check the settings for cpu1

· NOTE: if core 1 is not on, the cpufreq directory won't exist

· stop mpdecision OR start mpdecision
· to stop or start second core

· can run this command from any directory

· if the second core was already up when you did stop mpdecision, you'll have to shut it down manually

· cd /sys/devices/system/cpu/cpu1; cat online

· if it outputs 1, cpu1 is still up

· echo 0 > /sys/devices/system/cpu/cpu1/online

· shuts a given cpu down

Time Command on Android Device
To enable the time command on an android device, the Busybox needs to be installed.

· ARM pre-compiled busybox can be downloaded from http://busybox.net/downloads/binaries/1.19.0/ (the ARMv6l works well on Android).
· Then push it on the phone by

· renaming it 'time': adb push busybox-armv6l /data/local/tmp/time
· make sure it's executable (adb shell chmod 0777 /data/local/tmp/time).
Annex: USB tethering of Android Devices

Requirements

Android device running 2.2 Froyo or higher

Enable USB tethering on Android

- Switch ON "Tethering" option in "Setting->Wireless and Networks.

You can check the IP address of the newly created interface using the "adb" tool from the Android SDK. Once in the Android shell use the "netcfg" command. The IP address should be "192.168.42.129" (Hardcoded in Android source code).

Network structure

 Android terminal

Linux/Win PC

=========================
=========================

|
|
|
|

| <<connection status>>
|
| <<connection status>>
|

| - USB Tethering mode
|
| - Recognizes Android
|

|
|
| terminal as NIC
|

| <<interface>>
| USB Connection
|
|

| - New NIC
|<==============>
| <<interface>>
|

| 192.168.42.129
|
| - New NIC
|

|
|
| IP from Android
|

|
|
| device (DHCP)
|

| <<action>>
|
| <<action>>
|

|- Receive multicast
|
|- Send multicast
|

| packets (pcap)
|
| packets (pcap)
|

=========================
=========================

Play a PCAP
Windows
In order to play a PCAP file on a Windows based host, one can use the following tools:

· http://www.colasoft.com/packet_player/

Unix & Win32/Cygwin
In order to play a pcap file on a Unix based host, one can use the following tools:

· TCP Replay as available here: http://tcpreplay.synfin.net/
Verify

tbd
� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

� http://lists.gnu.org/archive/html/bug-gnu-utils/2008-12/msg00047.html

- 20/23 -

