TSG SA4 EVS SWG Ad-hoc telco #xx
AHEVS-462
May 20th 2019

Agenda item:
3
Source:
Intel, Fraunhofer IIS, Apple

Title:
EVS Float Conformance
Document for
Discussion
1 Introduction

In the work item on "EVS Float Conformance for Non Bit-Exact" (EVS_FCNBE) defined in S4-181225[1] the objectives of the WID are:

· Refinement of the conformance criteria proposed in TR 26.843, based on the latest reference code. The conformance process and criteria should be tight enough to avoid interoperability issues

· Tools and conformance test vector availability to perform conformance tests

· Further verification of the loudness tool
· Additional testing including validation that more general code changes are properly detected

· Definition of a mandatory conformance process for the usage of TS 26.443 using the tools developed in the study item FS_EVS_FCNBE, conformance criteria and conformance test vectors
This contribution provides an update on some of these objectives and draft text for the conformance process for Non bit-exact floating-point implementation presented in S4-190404.

2. Tools and Methods

In the Technical Report 28.843 [2] the following 3 tests are proposed for the conformance:
-
Decoder test based on Signal metrics described in Clause 5.2 comparing the CUT decoder implementation with TS 26.443 decoder.

-
Encoder test (possibly based on Loudness metrics described in Clause 5.3.3) comparing CUT encoder implementation with TS 26.443 encoder.

-
MOS-LQO verification based on POLQA described in Clause 5.3.2 comparing CUT implementation with TS 26.442 implementation.

The remaining points is to define the criteria for the encoder test based on the Maximum Loudness Difference.
Originally it was proposed to use the average and maximum statistic of MLD distribution. However as explain in [5] these statistics are not sufficient to take into account the variation due to mode decision in the encoder. It is then proposed [5] to use similar approach currently used in decoder test and define for each encoder test vectors a MLD reference profile, i.e. a MLD threshold for each frames. The test file will be considered equivalent to the reference file if the MLD is below the threshold for every frame.
3. Test Vectors

The decoder and encoder tests use the test vectors defined in 26.444.
For the MOS-LQO verification, it is proposed to use the audio samples from ITU-T P.501 Annex B & C, to conform to ITU P.863 guidelines.

4 Conformance Process

Based on the test methods and test vectors highlighted above a conformance process was outlined in Clause 7 of 26.843. The tests are run on all the test vectors.

[image: image1.emf]TS 26.443 (floating-point code)ImplementationTS 26.444 (test vectors)Decoder TestDecoderDecoderPass ?FailNoEncoder TestEncoderEncoderPass ?FailNoTS 26.442 (Fixed-point code)MOS-LQO TestPass ?FailNoAll tests passingconformantYesYesYesP.501 Annex C

For an implementation to be declared conformant to 26.443, all three tests (Encoder, Decoder and MOS-LQO) should pass. If one test is failing then the implementation is not conformant to 26.443 floating-point implementation.
5 Validation of the Conformance Process
To validate the sensitivity of the conformance process, TR.26.843 tested various implementations with different component configuration (platform, compiler, etc...).
The outcome could be classified in 3 categories: the ones that should pass (as normal optimization or no code change were made), the ones that should fail (as too aggressive optimization or code change were made), and the ones that are uncertain (it is not clear if optimization is good enough or not). Below table provides some examples of the implementation that should be used to validate the conformance process. 3GPP members are invited to propose additional implementations that can help to validate the conformance process.
Note that the FLC_Test1A code contains both encoder and decoder code change, as explained in [5].

	Name
	Code
	Platform
	Compiler
	Optimization
	OS
	Outcome
	Comment

	gcc-6 x86 64 -O3
	CB0
	X86 64bits
	gcc v6
	O3
	Linux
	Should Pass
	

	26.442
	CB0
	X86 64bits
	MS_VS 18
	None
	Linux
	should Fail
	Fixed-point code

	FLC_Tets1A
	CB0
	X86 64bits
	Gcc-7
	-O3
	Linux
	Should Fail
	Code change

	icc_02source
	CB0
	Atom 32bits
	Intel v16
	O2, source
	Linux
	Should Pass
	

	ARM
	CB0
	Cortex A53
	Gcc-8
	O2
	Ubuntu
	Should Pass
	

	Gcc-7_i686_0fast
	CB0
	X86 64 bits
	Gcc -7
	Ofast
	Linux
	Should Fail
	Aggressive optimization

6 Proposal
Based on the above considerations and the results included in TR 26.843, a draft CR to 26.444 for conformance testing for non bit-exact is proposed in Annex A. The revision marks indicate the changes compare to text proposed in [4]
7 References
[1] S4-181225 “WID on EVS for floating-point conformance for Non bit-exact”, Intel, Apple, Fraunhofer IIS, Huawei Technologies Co. Ltd, Orange, Oct. 2019
[2] 3GPP TR 26.843 “Study on Non Bit-Exact Conformance Criteria and Tools for Floating-Point EVS Codec”
[3] S4-180718 “MOS-LQO verification for EVS 14.2”, Intel, Fraunhofer IIS, Apple, July 2018.

[4] S4-190404 “EVS Float conformance”, Intel, Fraunhofer IIS, Apple, April 2019

[5] AHEVS-464 “EVS FCNBE using MLD profiles”. Fraunhofer IIS, Intel, May 2019
Annex A - Draft CR to 26.444

7
Conformance Testing

7.1 Bit-exact Conformance
In the scripts mentioned in clause 6, bit-exactness between the output sequences and test sequences are performed. If all the test vectors (decoded & bit-streams) are bit exact, then the implementation is considered conformant for 3GPP services. This applies for all implementations based on TS 26.442, TS 26.443 or TS 26.452.
7.2 Non-Bit-exact Conformance
7.2.1 Overview

In case an implementation based on Floating–point code (26.443) is used, the outputs may not be bit-exact and in this case non bit-exact conformance should be used. This conformance process is highlighted below.
Using the code in 26.443 a floating-point implementation is obtained by using compiler with specific platform options and optimizations. This implementation is then tested for conformance using three specific tests:

 -
Decoder test comparing the implementation decoder with TS 26.443 decoder.

-
Encoder test comparing the implementation encoder with TS 26.443 encoder.

-
MOS-LQO verification comparing the implementation with TS 26.442 implementation.

All three tests should pass for the implementation to be declared conformant. The tests are described in more details in Annex X.
Figure x1 shows the flow chart of the non bit-exact conformance process.

[image: image2.emf]TS 26.443 (floating-point code)ImplementationTS 26.444 (test vectors)Decoder TestDecoderDecoderPass ?FailNoEncoder TestEncoderEncoderPass ?FailNoTS 26.442 (Fixed-point code)MOS-LQO TestPass ?FailNoAll tests passingconformantYesYesYesP.501 Annex C

Figure x1 : Non bit-exact conformance process

7.2.2 Running the Tests

All test scripts and tools necessary to run the decoder and encoder test are attached to this zip file. The MOS-LQO test requires both an additional tool and database, as explained in Annex X.3. The reference files for SNR and MLD encoder and decoder tests are also included in this zip file.
<Note: Here we should list the various scripts and syntax>

Annex X: Tools Description
X.1 Decoder Test

X.1.1
General Considerations

The reference PCM signals are taken from the decoded floating point test sequences of TS 26.444. The PCM signal under test are obtained by running the floating point bit-stream included in TS 26.444 through the Decoder under Test (Figure x2). The reference decoder is the floating-point code of TS 26.443.

[image: image3.emf]Bitstreams (*.cod)Ref DecoderDecoder under TestTool(s)Reference signalSignal under Test

Figure x2: Flow diagram for the decoder test using signal based metrics

All metrics are calculated on the reference PCM signal [image: image5.png] and the PCM signal under test [image: image7.png] based on 20ms frames. The frames of the two signals will be time aligned, this means the delay compensation in EVS encoder and decoder remains ON (the default configuration). Furthermore the frame processing is aligned with the encoded frame by adding the decoder delay. Table x1 shows the delay values used for the different sampling frequencies.

Table x1: Delay used for alignment of processing frames with encoded frames

	Sampling frequency
	8000 Hz
	16000 Hz
	32000 Hz
	48000 Hz

	Delay (samples)
	10
	37
	74
	111

The number of samples [image: image9.png] for a 20ms frame size is defined by [image: image11.png], where [image: image13.png] represents the sampling rate.

The PCM signals [image: image14.png] and [image: image15.png] should be scaled between -1 and 1.

X.1.2 Metrics

X.1.2.1 RMS Error Threshold

The RMS method is derived from the decoder conformance used in ISO/IEC 14496-26 [10]. The RMS error is calculated for each 20ms frame and compared to a threshold according to:

[image: image18.png]

 QUOTE [image: image19.png] [image: image20.png]

The value chosen for the RMS error threshold is to assume change on the last bit of the audio signal:

[image: image22.png] with [image: image24.png]

 QUOTE [image: image25.png]
X.1.2.2 Signal to Noise Ratio (SNR)
The segmental SNR method is derived from the decoder conformance used in ISO/IEC 14496-26 [10]. For each 20 ms segment, the following values need to be calculated:

Energy of reference signal:[image: image27.png]
Noise energy:[image: image29.png]
Signal to noise ratio [image: image31.png] with [image: image33.png]
As EVS is a switched codec containing a LPC based speech coder and a MDCT based transform coder, the SNR values vary significantly depending on the used coding mode. Therefore, a constant threshold for the SNR is not suitable but instead, a reference value per frame and test vector should be specified. The SNR should be compared against the thresholds by

[image: image37.png] [image: image35.png]where is a 20 ms frame index and [image: image39.png] is the test vector index

The set of SNR reference values is included in the zip file.
X.1.2.3 Spectral Distortion

The spectral distortion method can be conducted on a 20 ms frame base by the following steps:

Calculate the absolute FFT spectrum of [image: image41.png] and [image: image43.png] using a Hanning window

[image: image45.png]
[image: image47.png]
with [image: image49.png] [image: image51.png]
The 32768 is due to MATLAB scaling and to align to 16 bit PCM C-code. This scaling is dependent on the input value range.

For all spectral bins the distortion d is calculated according to the following pseudo code:

cnt=0

d=0

for k=1..N/2-1

 if ([image: image53.png]==0 && [image: image55.png]==0)

 X_Y = 1;

 Y_X = 1;

 else
 if ([image: image57.png]==0)

 X_Y = 0;

 Y_X = 2;

 else if ([image: image59.png]==0)

 X_Y = 2;

 Y_X = 0;

 else
 X_Y = ([image: image61.png] * [image: image63.png]) / ([image: image65.png] * [image: image67.png]);

 Y_X = ([image: image69.png] * [image: image71.png]) / ([image: image73.png] * [image: image75.png]);

 end
 end
 COSH = (X_Y + Y_X - 2)/2;
 d = d + COSH;

 cnt = cnt+1;

end

d = d/cnt;

The distortion value [image: image77.png] is to be compared against a threshold. The frame will be considered as passed if [image: image79.png]

with
[image: image81.png]
X.1.3 Analysis Flow and Reporting

The three metrics are computed in a specific order, as shown in Figure x2. Once a frame passes a metric, the process is stopped and the next frame is analysed. The SNR metric is computed on the frames failing the RMS error criteria. Similarly the Spectral Distortion metric is computed on the frames failing the SNR criteria.

[image: image82.emf]For All framesRMS < TrmsCompute RMS errorFrame passYesCompute SNRNoSNR > TsnrYesCompute SDSD < TsdNoYesFrame FailNo

Figure x3: Flow chart for decoder tool

In a file one or two frames could slightly be above the threshold. To avoid relaxing the threshold, a constraint on the number of frames failing per file has been added as an additional criteria.
if number_of_frames_failing =< THRESH_GOOD_FRAMES_TO_PASS * number_of_frame_in file, the test signal will be considered equivalent to the reference signal.

All the test vectors need to pass for the implementation to be conformant.

In addition to the number of fail/pass test vectors, the statistics from the three methods should be displayed. Table x2 shows an example of reporting.

Table x2: Template for result presentation

	
	RMS
	WSNR
	Spectral Distortion

	Number of frames tested
	
	
	

	Number of frames passing
	
	
	

	Number of frames failing
	
	
	

	Ratio of frames passing
	
	
	

	Ratio of frames failing
	
	
	

As part of conformance criteria, thresholds are set for the ratio of frames passing with RMS and WNR tests (Ratio_RMSframespassing_and RatioWSNRframespassing respectively).

The list of the thresholds used in decoder test are summarized in table x3 with example values.

Table x3: List of thresholds

	Thresholds
	Description
	Example value

	SNRHEADROOM
	Headroom compare to the Tsnr threshold
	3 dB

	CDSNRMAX
	Limit of SNR for the spectral distortion test
	0 dB

	CDSNRHEADROOM
	Headroom compare to Tsnr threshold for the spectral distortion test
	10 dB

	Tsd
	Threshold for the spectral distance
	6.6

	THRESH_GOOD_FRAMES_TO_PASS
	Factor for number of failing frame per file
	0.005

	Ratio_RMSframespassing
	Minimal percentage for frames passing RMS error test
	47%

	RatioWSNRframespassing
	Minimal percentage for frames passing WSNR test
	95%

X.2 Encoder Test
X.2.1 General Consideration
The MLD metrics is used to test the floating-point encoder implementation. Figure x4 shows the flow diagram of the proposed encoder conformance test:

[image: image83.emf]Reference wavefile (TS 26.444)3GPP Float EncoderEncoder Under Test3GPP Float Decoder3GPP Float DecoderLoudness DifferenceMLDSignal under TestReference signal

Figure x4: Flow diagram for the encoder test using MLD Loudness Difference metric

All encoder test vectors from TS 26.444 will be encoded using the float encoder implementation under test. The bit-stream obtained will be then decoded using the 3GPP reference float decoder from TS 26.443 to obtain the test signals. The test signals will then be compared with the reference signal from TS 26.444. Since the loudness tool in the presented form operates on 48 kHz sample rate only, additional resampling is applied before processing.
X.2.2 Metrics
The Loudness Difference (LD) is used as to assess the encoder implementation. The procedure is adopted from the loudness calculation of PEAQ [11] using the Filter bank-based ear model. The following steps need to be processed:

-
Filterbank (Annex 2 section 2.2.5 of [11]):

-
subsample factor F changed to 16 for higher time resolution.

-
Outer and Middle Ear Filtering (Annex 2 section 2.2.6 of [11])

-
Frequency Domain Smearing (Annex 2 section 2.2.7 of [11])

-
Rectification (Annex 2 section 2.2.8 of [11])

-
Time Domain Smearing 1 - Backward Masking (Annex 2 section 2.2.9 of [11])

-
Adding of Internal Noise (Annex 2 section 2.2.10 of [11])

-
Time Domain Smearing 2 - Forward Masking (Annex 2 section 2.2.11 of [11])

-
Loudness (Annex 2 section 3.3 of [11]):

-
This section defines the specific loudness patterns [image: image84.emf]

𝑁[𝑘, 𝑛]

 for [image: image85.emf]

𝑘

 subbands and [image: image86.emf]

𝑛

 time samples

-
The specific loudness patterns are calculated for:

-
reference signal [image: image87.emf]

𝑁"#$[𝑘, 𝑛]

-
signal under test [image: image88.emf]

𝑁"#$"[𝑘, 𝑛]

-
Loudness Difference (LD):

-
The loudness difference [image: image89.emf]

𝑁"#$$[𝑛]

 is calculated as follows:

-
[image: image90.emf]

𝑁"#$$[𝑛] =	∑ +𝑁,-$[𝑘, 𝑛] − 𝑁1-21[𝑘, 𝑛]+34
567

The LD is computed with a granularity of 2ms. To get a MLD value every 20ms, 10 segments are combined using the maximum value of those 10 segments.

Note:
In the context of this test, the "loudness difference" is calculated as difference in some values (subtraction, not division).
The LD is then compared to a threshold LDref, for each 20 ms frame, and the MLD is defined as the maximum value of these differences.

[image: image95.png]
The test file will be considered equivalent to the reference file if the MLD is negative or equal to 0, i.e. the Loudness Difference doesn’t exceed the threshold for all the frames.
All the test vectors need to pass for the implementation to be conformant.

LDref has been obtained using these 4 implementations:
· clang-6.0 x86_64 -O2
· aarch64-linux-gnu-gcc-8 -march=armv8-a -O2

· gcc-7 i686 -O3
· MS Visual Studio 2017 /O2 (reference executable included in the TS 26.443 ZIP file)

For each frame the maximum MLD value of the three implementations then defines a corridor, the ‘refline’. This then leads to a profile for each EVS test vector, which contains on a 20ms frame basis an allowed MLD value relative to the reference. Allowed differences in implementations under test (IuTs) are thus limited to the tolerable differences by the different compilers used for the refline generation.

	
	
	

	
	
	

	
	
	

X.3 MOS-LQO Test
X.3.1 General consideration
For this test, POLQA™ software should be licensed, and the audio database ITU.P.501 Annex B & C should be downloaded. POLQA version 2.4 is currently used for the test.
For this test, four combinations of encoder/decoder are used (3GPP EVS encoder/decoder executables are taken from TS 26.442):

a)
3GPP fixed-point encoder and 3GPP fixed-point decoder (FX/FX),

b)
floating-point Encoder under Test and floating-point Decoder under Test (FL/FL),

c)
3GPP fixed-point encoder and floating-point Decoder under Test (FX/FL),

d)
floating-point Encoder under Test and 3GPP fixed-point decoder (FL/FX).

The MOS-LQO scores are computed for each of the four cases using the decoded files and the original test files.

The test files are based on P.501 Annex B & C to be compliant with POLQA tool. 30 files representing various talkers and languages are used for each test conditions, and the average MOS-LQO scores are reported.

The scenario a) is considered the reference score. For the three other scenarios (b, c and d), the difference in MOS-LQO of a) are then computed:

-
a) - b)

-
a) - c)

-
a) - d)

The difference a) - b) assesses the encoder + decoder floating-point implementation, the difference a) - c) assesses the decoder implementation and a) - d) assesses the encoder implementation.

Figure x5 represents the flow diagram to obtain the MOS-LQO in the three scenario.

[image: image96.emf]Fixed-Point DecoderFixed-Point EncoderEncoder under TestPOLQAReference wavefilePOLQAMOS-LQO(FX/FX)MOS-LQO(FL/FL)Decoder under Test

[image: image97.emf]Fixed-Point EncoderFixed-Point DecoderDecoder under TestPOLQAReference wavefilePOLQAMOS-LQO(FX/FX)MOS-LQO(FX/FL)

[image: image98.emf]Fixed-Point DecoderFixed-Point EncoderEncoder under TestPOLQAReference wavefilePOLQAMOS-LQO(FX/FX)MOS-LQO(FL/FX)Fixed-Point Decoder

Figure x5: Flow diagram to obtain the MOS-LQO in the three scenario

X.3.2 Test Cases
The differences are computed for various test conditions:

-
All the codec modes of EVS

-
All the bandwidths of EVS

-
All the bit-rates of EVS, including bit-rate switching

-
DTX ON and OFF

-
Various levels: -26 dB, -36 dB, -16 dB

-
Various noise conditions

-
Various impairment conditions

The files have been processed according to EVS-7c (EVS processing plan) for the various test conditions [6].

In all, 941 test conditions are assessed, representing 225,600 second of speech, or a little bit more than 62 hours.

X.3.3 Thresholds and Criteria

From the MOS-LQO differences of the test condition, the average, 95%, 99% and Maximum are computed for all bandwidths combined, as well as for each set of bandwidth condition. The number of test condition for each bandwidth and the total are summarized in Table x5.

Table x5: Number of test conditions per bandwidth

	Bandwidth
	NB
	WB
	WBIO
	SWB
	FB
	All

	Number
	136
	236
	216
	192
	161
	941

An implementation will be considered passing the MOS-LQO verification if all the average, 95 percentile, 99 percentile and maximum MOS-LQO differences are below the thresholds proposed in Table x6 for all conditions.

Table x6: Thresholds for MOS_LQO difference

	All
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.04
	0.07
	0.09

	A-C
	0.002
	0.02
	0.04
	0.07

	A-D
	0.002
	0.04
	0.08
	0.09

	NB
	Average
	95%
	99%
	Max

	A-B
	0.009
	0.07
	0.08
	0.09

	A-C
	0.002
	0.02
	0.04
	0.06

	A-D
	0.011
	0.07
	0.09
	0.09

	WB
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.04
	0.07
	0.08

	A-C
	0.002
	0.02
	0.04
	0.06

	A-D
	0.002
	0.04
	0.07
	0.09

	WBIO
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.02
	0.06
	0.08

	A-C
	0.002
	0.02
	0.03
	0.07

	A-D
	0.002
	0.02
	0.03
	0.08

	SWB
	Average
	95%
	99%
	Max

	A-B
	0.002
	0.04
	0.06
	0.09

	A-C
	0.003
	0.03
	0.04
	0.04

	A-D
	0.002
	0.04
	0.07
	0.08

	FB
	Average
	95%
	99%
	Max

	A-B
	0.006
	0.04
	0.07
	0.08

	A-C
	0.005
	0.04
	0.05
	0.06

	A-D
	0.005
	0.04
	0.06
	0.08

- 13/13 -

For All frames
RMS < Trms
Compute RMS error
Frame pass
Yes
Compute SNR
No
SNR > Tsnr
Yes
Compute SD
SD < Tsd
No
Yes
Frame Fail
No

TS 26.443
(floating-point code)
Implementation
TS 26.444
(test vectors)
Decoder Test
Decoder
Decoder
Pass ?
Fail
No
Encoder Test
Encoder
Encoder
Pass ?
Fail
No
TS 26.442
(Fixed-point code)
MOS-LQO Test
Pass ?
Fail
No
All tests passing
conformant
Yes
Yes
Yes
P.501 Annex C

Fixed-Point Encoder
Fixed-Point Decoder
Decoder under Test
POLQA
Reference wavefile
POLQA
MOS-LQO(FX/FX)
MOS-LQO(FX/FL)

Fixed-Point Decoder
Fixed-Point Encoder
Encoder under Test
POLQA
Reference wavefile
POLQA
MOS-LQO(FX/FX)
MOS-LQO(FL/FL)

Decoder under Test

Fixed-Point Decoder
Fixed-Point Encoder
Encoder under Test
POLQA
Reference wavefile
POLQA
MOS-LQO(FX/FX)
MOS-LQO(FL/FX)

Fixed-Point Decoder

Bitstreams (*.cod)
Ref Decoder
Decoder under Test
Tool(s)
Reference signal
Signal under Test

