

	
3GPP TSG-SA4 Video SWG post126	S4aV230123
Online, 16th January 2024
	CR-Form-v12.2

	PSEUDO CHANGE REQUEST

	

	
	26.812
	CR
	pseudo
	rev
	-
	Current version:
	1.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	

	

	Title:	
	[FS_ARMRQoE] pCR on QoE

	
	

	Source to WG:
	China Unicom

	Source to TSG:
	S4

	
	

	Work item code:
	FS_ARMRQoE
	
	Date:
	16-01-2024

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-18

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)
Rel-19	(Release 19)

	
	

	Reason for change:
	There no other inputs from other 3GPP/non-3GPP specifications (e.g. MeCar) on Metrics Observation Points, some Editor’s notes can be resolved to complete the SI.

	
	

	Summary of change:
	· Resolve the Editor’s Note in clause 6.2.1.7, 6.2.2, 6.2.3, 6.2.4, 6.3.6.
· Propose the conclusions and recommendations for this study.
· Some editorial changes, e.g. change the figure format to visio format.

	
	

	Consequences if not approved:
	AR/MR QoE SI is not completed. Editor’s note are not addressed in TR 26.812.

	
	

	Clauses affected:
	3, 6.2.1.7, 6.2.2, 6.2.3, 6.2.4, 6.3.6, 8

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	1stChange

[bookmark: _Toc119408422][bookmark: _Toc128059542][bookmark: _Toc143815926][bookmark: _Toc152695623][bookmark: _Toc128059556][bookmark: _Toc143815940][bookmark: _Toc152695637][bookmark: _Toc128059558][bookmark: _Toc143815950][bookmark: _Toc143866522]3	Definitions of terms, symbols and abbreviations
This clause and its three subclauses are mandatory. The contents shall be shown as "void" if the TS/TR does not define any terms, symbols, or abbreviations.
[bookmark: _Toc119408423][bookmark: _Toc128059543][bookmark: _Toc143815927][bookmark: _Toc152695624]3.1	Terms
For the purposes of the present document, the terms given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
Definition format (Normal)
<defined term>: <definition>.
example: text used to clarify abstract rules by applying them literally.
[bookmark: _Toc119408424][bookmark: _Toc128059544][bookmark: _Toc143815928][bookmark: _Toc152695625]3.2	Symbols
For the purposes of the present document, the following symbols apply:
Symbol format (EW)
<symbol>	<Explanation>

[bookmark: _Toc119408425][bookmark: _Toc128059545][bookmark: _Toc143815929][bookmark: _Toc152695626]3.32	Abbreviations
For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].
ACD	Anchor Creation Delay
ADRP	Anchor Detection to Render to Photon
AR	Augmented Reality
AUR	Anchor Untracked Ratio
DSSIM	Structural Dissimilarity index
HMAVQ	Head-Motion Aware Viewport Quality metric
HVS	Human Visual System
ML	Machine Learning
MR 	Mixed Reality
MSE	Mean Square Error
NWDAF	Network Data Analytics Function
PSNR	Peak Signal to Noise Ration
QMC	QoE Measurement Collection
QoE	Quality of Experience
ROI	Region-of-Interest
RTP	Real-Time Protocol
RTT	Round-Trip Time
SRTP	Secure Real-time Transport Protocol
SSIM	Structural Similarity Index
VR	Virtual Reality
XR	Extended Reality

	END of 1st Change

	2ndChange

6.2	AR/MR QoE reference model
The defined AR/MR QoE framework and the observation points defined in clause 5.1 of TS 26.119 [5] can be reused as baseline for the AR QoE reference model, which is illustrated in Figure 6.2-1.
NOTE:	The observation points can also be used to identify the advanced AR/MR QoE metrics.

Figure 6.2-1: AR/MR QoE reference model and Metrics Observation Points
It’s also noted that the above observation points may be further updated based on the agreements of the AR/MR QoE metrics identification and definition.
[bookmark: _Toc92713719][bookmark: _Toc67919022][bookmark: _Toc128059557][bookmark: _Toc143815941][bookmark: _Toc152695638]6.2.1	Observation Point 1
XR Runtime is a set of functions that interface with a platform to perform commonly required operations, such as accessing the controller/peripheral state, getting current and/or predicted tracking positions, performing spatial computing, and submitting rendered frames to the display processing unit. The XR Runtime provides the viewer pose and projection parameters needed to render each view for use in a composition projection layer.
XR Source Management addresses the management of data sources provided through the XR runtime such as microphones, cameras, trackers, etc. The XR Source Management may expose information to the application or may provide a subset to the media access function to be sent remote.
Presentation Engine is a set of composite renderers, rendering the component of the scenes, based on the input from the Scene Manager. The Scene Manager together with the Presentation Engine that includes functions such as scene composition and possible complex audio or visual rendering.
Observation point 1 is derived from the XR Runtime API which exchanges information between XR Runtime and XR Source Management/Presentation Engine. In addition, MeCar PD clarify that the OP1 (can also called IF1) is implemented as an API-1 that exposes functions provided by the XR Runtime. An example of this API is the Khronos OpenXR API. So the key is to define parameters that may be exposed (or monitored) through the runtime.
[bookmark: _Toc143815942][bookmark: _Toc152695639]6.2.1.1	Viewer pose and Projection parameters
Viewer pose is to present the user position and orientation, which can be defined as quaternion (X, Y, Z, W) for orientation and three vectors (X, Y, Z in cartesian coordinate system) for position. Projection parameters are parameters associated to the perspective/orthogonal/omnidirectional projection to the 3D scene.
It’s noted that OpenXR is the interface between an application and an in-process or out-of-process "XR runtime system", or just "runtime" hereafter [22]. In OpenXR [22], an XR application uses xrLocateViews to retrieve the viewer pose and projection parameters needed to render each view for use in a composition projection layer. xrLocateViews returns an array of XrView elements and the XrView data structure is defined as below [22]:
typedef struct XrView {
 XrStructureType	type;
 void*				next;
 XrPosef			pose;
 XrFovf				fov;
} XrView;
In XrView structure, it’s defined that pose is an XrPosef indicating the location and orientation of the view in the space specified by the xrLocateViews function, fov is the XrFovf for the four sides of the projection. And it also clarifies the XrView structure contains view pose and projection state necessary to render a single projection view in the view configuration.
Viewer pose and projection parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815943][bookmark: _Toc152695640]6.2.1.2	Camera information
Camera information including the attribute of the camera and everything external to the camera, such as resolution, FOV, relative pose, attached to,etc [22].
The section 12.117 of XR_OCULUS_external_camera in OpenXR [22] clarifies this extension enables the querying of external camera information for a session. This extension is intended to enable mixed reality capture support for applications. For details,
XR_OCULUS_external_camera API supports returning camera intrinsics and extrinsics.
The intrinsic parameters are the attributes of the camera and include [22]:
-	fov is the XrFovf for this camera’s viewport.
-	virtualNearPlaneDistance is the near plane distance of the virtual camera used to match the external camera
-	virtualFarPlaneDistance is the far plane distance of the virtual camera used to match the external camera
-	imageSensorPixelResolution is the XrExtent2Di specifying the camera’s resolution (in pixels).
The extrinsic parameters are everything external to the camera: relative pose, attached to, etc.
Camera information parameter, including the camera intrinsic and extrinsic, may be monitored or observed via the OP1.
[bookmark: _Toc143815944][bookmark: _Toc152695641]6.2.1.3	Gesture
Gesture can trigger specific actions during an AR experience, it can be provided as a list of hand joint poses which represent the current configuration of the tracked hands.
Clause 12.30, XR_EXT_hand_tracking in OpenXR [22] enables applications to locate the individual joints of hand tracking inputs. It enables applications to render hands in XR experiences and interact with virtual objects using hand joints.
The section 12.57, XR_FB_hand_tracking_aim in OpenXR [22], clarifies that the XR_EXT_hand_tracking extension provides a list of hand joint poses which represent the current configuration of the tracked hands. This extension adds a layer of gesture recognition that is used by the system. That means an application is allowed to get a set of basic gesture states for the hand when using the XR_EXT_hand_tracking extension. Hand gesture parameter may be monitored or observed via the OP1.
[bookmark: _Toc143815945][bookmark: _Toc152695642]6.2.1.4	Body action
Body action parameters includes body joints and joint locations. The section 12.44 of XR_FB_body_tracking in OpenXR [22] clarifies that this extension enables applications to locate the individual body joints that represent the estimated position of the user of the device. It enables applications to render the upper body in XR experiences. When create a body tracker handle, this handle can be used to locate body joints using xrLocateBodyJointsFB function, and a body tracker provides joint locations with an unobstructed range of human body motion.
Body action parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815946][bookmark: _Toc152695643]6.2.1.5	Tracking pose prediction parameters
Tracking pose prediction parameters includes space location information.
Section 7.4 of Locating Spaces in OpenXR [22] clarifies that applications use the xrLocateSpace function to find the pose of an XrSpace’s origin within a base XrSpace at a given historical or predicted time.
The structure of xrLocateSpace is describe as below [22]:
XrResult xrLocateSpace(
 XrSpace space,
 XrSpace baseSpace,
 XrTime time,
 XrSpaceLocation* location);
The detailed parameters description are listed as below:
-	space identifies the target space to locate.
-	baseSpace identifies the underlying space in which to locate space.
-	time is the time for which the location should be provided.
-	location provides the location of space in baseSpace.
It also described that for a time in the past, the runtime should locate the spaces based on the runtime’s most accurate current understanding of how the world was at that historical time. For a time in the future, the runtime should locate the spaces based on the runtime’s most up-to-date prediction of how the world will be at that future time. The minimum valid range of values for time are described in Prediction Time Limits. With respect to backward prediction, the application can pass a prediction time equivalent to the timestamp of the most recently received pose plus as much as 50 milliseconds in the past to retrieve accurate historical data.
Tracking pose prediction parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815947][bookmark: _Toc152695644]6.2.1.6	Pose prediction parameters
Pose prediction parameters include viewer pose information and the target display time and XR space.
In clause 6.2.1.1, it’s described that xrLocateViews function defined in the OpenXR can retrieve the viewer pose and projection parameters needed to render each view for use in a composition projection layer. The data structure of xrLocateViews function is defined as below in section 10.2 of View and Projection State in OpenXR [22].
The structure of xrLocateViews is describe as below [22]:
XrResult xrLocateViews(
 XrSession 						session,
 const XrViewLocateInfo* 	viewLocateInfo,
 XrViewState* 					viewState,
 uint32_t						viewCapacityInput,
 uint32_t* 						viewCountOutput,
 XrView* 						views);
The XrViewLocateInfo data structure is defined as below [22]:
typedef struct XrViewLocateInfo {
 XrStructureType 				type;
 const void* 					next;
 XrViewConfigurationType 	viewConfigurationType;
 XrTime 						displayTime;
 XrSpace 						space;
} XrViewLocateInfo;
In XrViewLocateInfo structure, it contains the display time and space used to locate the view XrView function. The displayTime is the time for which the view poses are predicted, and space is the XrSpace in which the pose in each XrView is expressed. So pose information corresponding to each view can be predicated based on the target display time for a given frame.
Pose prediction parameters may be monitored or observed via the OP1.
[bookmark: _Toc143815948][bookmark: _Toc152695645]6.2.1.7	Eye gaze pose prediction parameters
Eye gaze typically consists of a gaze origin (a point positioned between the user’s eyes) and a gaze direction (a ray pointing towards where the user is looking at), and gaze point (a three-dimensional position where the user is looking at). There are two different cases to use eye gaze information, e.g. for eye interacting and for eyes rendering in XR experience.
It’s noted that AR/MR QoE metrics collection is sensitive to user privacy, e.g. eye gaze related QoE metrics.
In the eye interaction case, it’s described in the OpenXR [22] that applications can get eye gaze input from an eye tracker to enable eye gaze interactions by XR_EXT_eye_gaze_interaction extension. With this extension, an application can discover if the XR runtime has access to an eye tracker, bind the eye gaze pose to the action system, determine if the eye tracker is actively tracking the users eye gaze, and use the eye gaze pose as an input signal to build eye gaze interactions [22]. In this case, eye gaze pose information is directly got by the application, not used in the rendering.
The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned. The eye gaze pose may originate from a point positioned between the user’s eyes. At the time both the position and direction of the eye pose is tracked. The runtime must set both XR_SPACE_LOCATION_POSITION_TRACKED_BIT and XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT. To allow for an application to reason about high accuracy eye tracking, the application can chain in an XrEyeGazeSampleTimeEXT to the next pointer of the XrSpaceLocation structure passed into the xrLocateSpace call. The XrEyeGazeSampleTimeEXT structure is defined as below:
typedef struct XrEyeGazeSampleTimeEXT {
 XrStructureType				type;
 void*							next;
 XrTime							time;
} XrEyeGazeSampleTimeEXT;
In XrEyeGazeSampleTimeEXT structure, it’s defined that time is when in time the eye gaze pose is expressed. The time in the XrEyeGazeSampleTimeEXT structure can be set to the clamped, predicted or interpolated time. The application may inspect the time field to understand when in time the pose is expressed. The time field may be in the future if a runtime can predict gaze poses. So eye gaze poses can be predicated based on the future time.
In eye interaction case, eye gaze pose prediction parameters may be monitored or observed via the OP1.
In the case that applications needs to render eyes in XR experience and obtain position and orientation of the user’s eyes, such as driving the animation of avatar eyes. In this case, eye gaze information may be used for foveated rendering.
The XrEyeTrackerFB handle can be used to represent the resources for eye tracking. This handle is used for getting eye gaze using xrGetEyeGazesFB function. The xrGetEyeGazesFB function is defined as below:
XrResult xrGetEyeGazesFB(
 XrEyeTrackerFB				eyeTracker,
 const XrEyeGazesInfoFB*	gazeInfo,
 XrEyeGazesFB*				eyeGazes);
In the xrGetEyeGazesFB function, gazeInfo is the information to get eye gaze, and eyeTracker is a pointer to XrEyeGazesFB receiving the returned eye poses and confidence. The XrEyeGazesInfoFB structure describes the information to get eye gaze directions, whose structure is defined as below:
typedef struct XrEyeGazesInfoFB {
 XrStructureType				type;
 const void*						next;
 XrSpace						baseSpace;
 XrTime							time;
} XrEyeGazesInfoFB;
In the xrGetEyeGazesFB function, baseSpace is an XrSpace within which the returned eye poses will be represented. The time is an XrTime at which the eye gaze information is requested.
The application should request a time equal to the predicted display time for the rendered frame. The system will employ appropriate modeling to provide eye gaze at this time.
The XrEyeGazesFB structure returns the state of the eye gaze directions, which structure is defined as below:
typedef struct XrEyeGazesFB {
 XrStructureType				type;
 void*							next;
 XrEyeGazeFB					gaze[XR_EYE_POSITION_COUNT_FB];
 XrTime							time;
} XrEyeGazesFB;
The gaze is an array of XrEyeGazeFB receiving the returned eye gaze directions, and the time is an XrTime time at which the returned eye gaze is tracked or extrapolated to.
XrEyeGazeFB structure describes the validity, direction, and confidence of a social eye gaze observation, which structure is defined as below:
typedef struct XrEyeGazeFB {
 XrBool32						isValid;
 XrPosef						gazePose;
 Float							gazeConfidence;
} XrEyeGazeFB;
The gazePose is an XrPosef describing the position and orientation of the user’s eye. XrPosef structure is defined as below:
typedef struct XrPosef {
 XrQuaternionf					orientation;
 XrVector3f						position;
} XrPosef;
The pose is represented in the coordinate system provided by XrEyeGazesInfoFB::baseSpace. The gazeConfidence is a float value between 0 and 1 that represents the confidence for eye pose. A value of 0 represents no confidence in the pose returned, and a value of 1 means maximum confidence in the returned eye pose. The eye gaze pose is natively oriented with +Y up, +X to the right, and -Z forward and not gravity-aligned, similar to the XR_REFERENCE_SPACE_TYPE_VIEW in [22].
Eye gaze pose parameters, such as user’s eye position and orientation parameter can be predicted at a future time base on the field of XrTime in XrEyeGazesFB structure.
In the eye rendering in XR experience cases, eye gaze pose prediction parameters may be monitored or observed via the OP1.
In summary, for either eye interaction or eye rendering cases, the eye gaze pose prediction parameters may be monitored or observed via the OP1.
Gaze pose parameters may be used to be identified as two potential QoE metrics. Firstly, the eye gaze pose prediction error can be derived by calculating the deviations between the actual gaze position/orientation information and the predicated gaze position/orientation information. The eye gaze pose prediction error affects user's experience of looking at an XR world area or content. e.g. in the foveated rendering scenario, eye tracked foveated rendering renders lower pixel density in the periphery of the user’s gaze, taking advantage of low peripheral acuity. If the eye gaze pose prediction error is a lot, it may happen that people will see low-pixel density content in the center of the gaze, this will reduce the user's perception of the experience.
Secondly, the eye gaze interaction latency may be also derived to indicate the time from the eye gaze information is requested until the eye gaze pose is displayed (i.e., the content reflecting the eye gaze information is displayed). e.g. in the foveated rendering scenario, if the eye gaze interaction latency is large and when the user's gaze changes, people will find that the content he is looking at is still low pixelated for a longer period of time, which will degrade user experience.
Eye gaze parameters monitoring and potential eye gaze related QoE metrics are not studied in current release.
Editor’s Note: Eye gaze parameters monitoring and potential eye gaze related QoE metrics can be further discussed if there are detailed eye gaze rendering information imported from MeCar WI”.

[bookmark: _Toc143815949][bookmark: _Toc152695646]6.2.1.8	Parameters monitored by OP1
To summarize, observation point 1 is defined to monitor:
-	Viewer pose
-	Projection parameters
-	Camera information
-	Gesture
-	Body action
-	Tracking pose prediction parameters
-	Pose prediction parameters
-	Registration latency
[bookmark: _Toc152695647]6.2.2	Observation Point 2
Scene Manager is a set of functions that supports the application in arranging the logical and spatial representation of a multisensorial scene based on support from the XR Runtime. XR Scene Manager has access to the latest pose and tracking information from the XR Runtime which is then provided. Based on this information, the Scene Manager may for example determine the objects visible to the user at a given point in time or more generally the objects that may be needed to be rendered in the next rendering cycles.
Media Access Function is a set of functions that enables access to media and other XR-related data that is needed in the Scene manager or XR Runtime to provide an XR experience. The media access function accesses the network resources or sends data to the network using the established media pipelines.
Observation point 2 observes information at the input of the Scene Manager from the Media Access Function or application. For the first case, OP2 is derived from the API which exchanges scene description information and primitive buffers formats between Scene Manager and Media Access Function. Scene description information may be generated from the application or in a scene description delivery document. The primitive buffers are defined via this API for different media types that can be rendered by the Visual and Audio renderer. The combination of the scene description information and the primitive buffers provide sufficient information to the presentation engine in order create an immersive audio-visual experience. Parameters that can be observed in observation point 2 are not studied in current release.OP2 is defined to monitor:
Editor’s Note: Parameters to be monitored in OP2 are FFS, which can be aligned with MeCar WI TS 26.119.
[bookmark: _Toc152695648]6.2.3	Observation Point 3
Observation point 3 is derived from the API which exchanges information between XR Source Management and Metrics Access Functions. Information collected from XR Runtime may be serialized, time stamped, and compressed via this API, including: Viewer pose and projection parameters needed to render using the xrLocateViews function to render each view for use in a composition projection layer, camera and microphone output, etc. For XR metadata to be possibly delivered over a network interface, the raw formats including information on timing needs to be defined in order to permit serialization of the data in metadata delivery. Information includes viewer pose, triggers and actions, etc.
OP3 is defined to monitor:
-	Viewer pose
Editor’s Note: Additional parameters to be monitored in OP3 are FFS, which can be aligned with MeCar WI TS 26.119.
[bookmark: _Toc128059559][bookmark: _Toc143815951][bookmark: _Toc152695649]6.2.4	Observation Point 4
Observation point 4 is derived from the API which exchanges information between Media Access Function and 5G System. The information delivered from this API includes: Scene Description, Audio and video formats for parallel decoding of multiple buffers, pose information, metadata, etc. This API is equivalent to the 3GPP VR Operation Point as defined in TS 26.118, which includes spatial and temporal resolutions, and the encoding format, etc.
OP4 is defined to monitor:
-	Spatial and temporal resolutions
Editor’s Note: Additional parameters to be monitored in OP4 are FFS, which can be aligned with MeCar WI TS 26.119.

	END of 2nd Change

	3rd Change

[bookmark: _Toc143815953][bookmark: _Toc152695650]6.3	Introduction of AR/MR QoE metrics
The typical procedures can be shown as below [2].
1.	Application Started
2.	Initial AR/MR object retrieval
3.	XR Spatial Mapping
4.	The AR/MR objects are rendered and displayed at the right place based on the reconstructed 3D map.
Based on the above typical procedures, the following QoE metrics can be introduced and measured.
[bookmark: _Toc143815954][bookmark: _Toc152695651]6.3.1	Registration latency
Registration latency indicates the time from the application is started until the 3D reconstructed map is obtained by the XR runtime and it can be observed in the OP-1. The whole 3D map reconstruction includes following aspects:

Figure 6.3.1-1: Functional diagram for XR Spatial computing with network/cloud support [2]
1)	Surrounding sensing latency;
2)	Sensor information delivery from the MAF to the XR Spatial Computing Server;
3)	3D Map reconstruction and Spatial Description generation;
4)	Spatial Description delivery from the XR Spatial Computing Server to the MAF;
5)	Spatial Description parsing and the local/remote AR object displaying;
This metric is also available for the local AR/MR experience without network assistance.
[bookmark: _Toc143815955][bookmark: _Toc152695652]6.3.2	Scene startup latency and Interaction latency
Scene startup latency indicates the time from the application is started until the remote initial AR scene is displayed in the right place of the reconstructed 3D space. For instance, once the AR application is started, an initial AR scene is requested by the client and further sent back to the AR runtime.
The interaction latency indicates the time from the new AR scene is requested until the remote new AR scene is displayed. For example, when user clicks to request a specific AR object in the front, the AR scene is then requested by the client and further sent back to the AR runtime for rendering and display. Render to photon time is calculated using predicted displayTime minus startRenderTime. Predicted displayTime can be monitored by the observation point 1, and startRenderTime is defined as the time when the renderer starts to render the scene according to the viewer pose.
These can be observed in the OP-1. This can include following aspects:

Figure 6.3.2-1: Functional structure for AR UE
1)	Optionally, AR scene request sent from the MAF to the remote scene server;
2)	AR scene generation and rendering the remote scene server;
3)	AR scene delivery from the scene server to the MAF;
4)	AR scene rendering and display.
This metric is also available for the local AR/MR experience without network assistance.
[bookmark: _Toc143815956][bookmark: _Toc152695653]6.3.3	Tracking pose prediction error
This metric belongs to the device part, which mainly depends on the tracking pose prediction accuracy.
Tracking pose prediction error mainly refers to the relative pose error which indicates the deviation of the relative pose in the real world and the predicted pose. This can be observed at OP-1 and derived by comparing the predicated spaces locations and real space locations, and detailed QoE metric is defined in the Table 6.3.3-1.
Table 6.3.3-1: Tracking pose prediction error
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000025]TrackingPosePredictionErrorSet
	Set
	Set of tracking pose prediction error.

	
	Entry
	Object
	

	
	
	Time
	Integer
	The time for which the location should be provided.

	
	
	SpacePredictionError
	Set
	The deviation between the actual and predicted space location.

Note that the actual location may not be known in an XR session.

[bookmark: _Toc143815957][bookmark: _Toc152695654]6.3.4	One-way delay and RTT
[bookmark: _Toc143815958][bookmark: _Toc152695655]6.3.4.1	Background
The motion-to-render-to-photon delay has a significant impact on the QoE. The delay consists of the uplink one-way delay, the downlink one-way delay, or the round-trip time (RTT). One of the issues of measuring these delays is that the measurements may not be representative of the delays experienced by the media. The issue has been considered in SmarTAR [23], and an in-band delay measurement method with real-time protocol (RTP) header extension has been agreed. The method is beneficial to improving the accuracy of the measured the one-way delays and RTT.
[bookmark: _Toc143815959][bookmark: _Toc152695656]6.3.4.2	Metric description
Each delay of the uplink one-way delay, the downlink one-way delay and RTT includes the delays in the communication networks as well as the processing delay such as encryption (e.g., in the case of SRTP) and the queueing delay in the processing pipeline.
[bookmark: _Toc143815960][bookmark: _Toc152695657]6.3.5	Pose error and time error
[bookmark: _Toc143815961][bookmark: _Toc152695658]6.3.5.1	Background
The rendering process may use a predicted pose for rendering. The pose error (the difference between the pose used for rendering and the pose at the actual display time) affects the match can cause motion sickness, although the XR Runtime can mitigate the impact of pose errors to some extent by reprojection. Thus the pose error is a relevant metric for QoE.
The pose error depends on the time error (for a rendered frame, how much the predicted display time is off from the actual display time). The time error can be used as a control knob by the rendering process and the communication network to adjust the respective delays in optimizing the QoE. Therefore, the time error is a relevant metric for QoE optimization.
[bookmark: _Toc143815962][bookmark: _Toc152695659]6.3.5.2	Metric description
As described in clause 6.2.1.1, a pose can be described by a position and an orientation in space relative to an XR Space. Viewer Pose Prediction Error QoE metric is defined in the below table 6.3.5.2-1.
Table 6.3.5.2-1: Viewer Pose Prediction Error
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000026]ViewerPosePredictionErrorSet
	Set
	Set of viewer pose prediction errors.

	
	Entry
	Object
	

	
	
	Time
	Integer
	The time when the predicted viewer pose is used for.

	
	
	
	view
	Integer
	The view index (0 for left eye and 1 for right eye)

	
	
	
	
	Pose prediction error
	Set
	The deviation between the actual and predicted pose.

	
	
	
	
	
	Position prediction error
	Vector
	Vector distance between the actual and predicted position

	
	
	
	
	
	Orientation prediction
error
	Vector
	Quaternion distance between the actual and predicted position

	
	
	
	
	FoV prediction error
	Set
	The deviation between the actual and predicted FoV.

	
	
	
	
	
	Left error
	float
	Difference between the actual and predicted left angle of FoV

	
	
	
	
	
	Right error
	float
	Difference between the actual and predicted right angle of FoV

	
	
	
	
	
	Up error
	float
	Difference between the actual and predicted Up angle of FoV

	
	
	
	
	
	Down error
	float
	Difference between the actual and predicted Down angle of FOV

The view is an integer value specifying left or right eye. In OpenXR this corresponds to view index in XrViewConfigurationProperties and XrCompositionLayerProjection. As an example, the deviation of actual and predicated pose information can be summarized into a single metirc as formula 6.3-1. In this formula, DevposPredError means the deviation of actual and predicated pose information. α and β represent the weights of the deviation of position and orientation respectively, the weights may be set based on the implementation or application. PA, PP refer to the actual position and the predicted position respectively, with (x,y,z) indicating their respective Cartesian coordinates , and QA ,QP refer to the actual orientation and the predicted orientation respectively, expressed as unit quaternions and Q-1 indicates the quaternion conjugation operation.
6.3-1
Note that the actual pose may not be known during an XR session.

[bookmark: _Toc143815963][bookmark: _Toc152695660]6.3.5.3	Measurement procedure
A measurement procedure for the scenario of cloud-based rendering is shown in Figure 6.3.5.3-15.2.3-1. The XR Runtime and the XR Application may be on a same device such as a UE, or on difference devices such as an AR glasses (which hosts the XR Runtime) and a UE (which hosts the XR Application). The steps are as follows:
1)	The XR Application estimates the round-trip time (RTT) between the XR application and the Edge Application Server (EAS).
2)	The XR Application queries for the next display time. This (and step 3) can be achieved by calling the xrWaitFrame function in OpenXR.
3)	The XR Runtime replies with the next display time.
4)	The XR application predicts a display time – an initial prediction – and the use of initial is because a second prediction/estimation will be made later. This predicted display time is called T2.predicted1.
5)	The XR application queries for a predicted pose at the initial predicted display time T2.predicted1. Calling the function xrLocateViews in OpenXR can achieve this step and step 7.
6)	The XR Runtime predicts the pose, and the prediction occurs at time T1.
7)	The XR Runtime returns with the predicted pose (P.predicted1) including status flags information.
7bis)	The XR application computes the accuracy level (AL.predicted1) of the predicted pose based on the status flags information returned with that pose.
8)	The XR application sends the predicted pose (P.predicted1) and the associated initial predicted display time (T2.predicted1) to the EAS.
9)	The EAS renders for the predicted pose (P.predicted1), and compresses the rendered frame.
10)	The EAS returns the rendered frame along with the initial predicted display time (T2.predicted1) to the XR Application.
11)	The XR Application sends the rendered frame to the XR Runtine, e.g., via swapchain. This can be achieved by calling the xrReleaseSwapchainImage function in OpenXR. The XR Application passes the display time used for the rendering the frame, and this can be achieved by calling the xrEndFrame function in OpenXR.
12)	The XR Application queries for the predicted display time. This is intended to get a more accurate prediction of the display time than the one in step 4, because there is less time to predict into the future at this moment.
13)	The XR Runtime returns an updated prediction of the display time (T2.predicted2).
14)	The XR Runtime performs reprojection for pose correction. The actual display play time is called T2.actual.
15)	The XR Application queries for the pose associated with the updated prediction of the display time (T2.predicted2). This can be achieved by calling the xrLocateViews function in OpenXR.
16)	The XR Runtime does pose estimation.
17)	The XR Runtime returns a pose estimate (P.predicted2) including status flags information.
18)	The XR Application computes the aggregated accuracy level (AL.predicted2) using the status information returned with the pose (P.predicted2) from the step 17 and the accuracy level (AL.predicted1) from the step 7bis. Then the XR Application computes a pose error estimate (P.predicted1 – P.predicte2) and a time error estimate(T2.predicted1 – T2.predicted2) according to the aggregated accuracy level (AL.predicted2).

Figure 6.3.5.3-1: The procedure for measuring the pose error and time error in pose prediction
Note that two queries are used to predict the display time of a same frame. The first query occurs in step 2, and the query result is used to determine a target display time for the rendering process in step 4. The second query occurs much closer to the actual display time, as shown in steps 12-13, and thus provides higher accuracy. This is shown in Figure 6.3.5.3-2.

Figure 6.3.5.3-2: The use of a second prediction (T2.predicted2) of the display time for better accuracy
Note: to compute the accuracy level in step 7bis and 18 with the Khronos OpenXR API [22], the xrLocateViews function returns the status information related to the predicted/estimated pose in the XrViewState structure. XrViewStateFlags in the XrViewState are flags that give information validity and tracking of position and orientation.
The following XrViewStateFlags may be used to compute an accuracy level on the predicted/estimated pose:
-	XR_VIEW_STATE_ORIENTATION_VALID_BIT
-	XR_VIEW_STATE_POSITION_VALID_BIT
-	XR_VIEW_STATE_POSITION_TRACKED_BIT
-	XR_VIEW_STATE_ORIENTATION_TRACKED_BIT

Editor’s note: the computation of the accuracy level using the XrViewStateFlags is FFS.
[bookmark: _Toc143815964][bookmark: _Toc152695661]6.3.6	Device related QoE metrics
[bookmark: _Toc143815965][bookmark: _Toc152695662]6.3.6.1	Background
Some property information of AR/MR device have impacts on user experience, e.g. resolution, hand tracking, eye tracking, spatial mapping…, which are the part of AR/MR device-related QoE metrics.
For AR/MR terminals, the UE can get the system properties by xrGetSystemProperties function defined in openXR [22]. The structure of xrGetSystemProperties is defined as below [22]:
XrResult xrGetSystemProperties(
 XrInstance						instance,
 XrSystemId					systemId,
 XrSystemProperties*			properties);
The properties points to an instance of the XrSystemProperties structure, that will be filled with returned information, and the XrSystemProperties structure is defined as [22]:
typedef struct XrSystemProperties {
 XrStructureType 					type;
 void* 				next;
 XrSystemId 			systemId;
 uint32_t 				vendorId;
 char 				systemName[XR_MAX_SYSTEM_NAME_SIZE];
 XrSystemGraphicsProperties 	graphicsProperties;
 XrSystemTrackingProperties 	 trackingProperties;
} XrSystemProperties;

The “next” is NULL or a pointer to the next structure in a structure chain, such as XrSystemEyeTrackingPropertiesFB, XrSystemHandTrackingPropertiesEXT, XrSystemSpatialEntityPropertiesFB…
The XrSystemEyeTrackingPropertiesFB structure is defined as below in [22]:
typedef struct XrSystemEyeTrackingPropertiesFB {
 XrStructureType				type;
 void*							next;
 XrBool32						supportsEyeTracking;
} XrSystemEyeTrackingPropertiesFB;
The “supportsEyeTracking” is an XrBool32, indicating if the current system is capable of receiving eye tracking input. So, eye tracking capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsEyeTracking”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support eye tracking capability.
The XrSystemHandTrackingPropertiesEXT structure is defined as below in [22]:
typedef struct XrSystemHandTrackingPropertiesEXT {
 XrStructureType				type;
 void*							next;
 XrBool32						supportsHandTracking;
} XrSystemHandTrackingPropertiesEXT;
The “supportsHandTracking” is an XrBool32, indicating if the current system is capable of hand tracking input. So, hand tracking capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsHandTracking”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support hand tracking capability.
The XrSystemSpatialEntityPropertiesFB structure is defined as below in [22]:
typedef struct XrSystemSpatialEntityPropertiesFB {
 XrStructureType				type;
 const void*						next;
 XrBool32						supportsSpatialEntity;
} XrSystemSpatialEntityPropertiesFB;
The “supportsSpatialEntity” is an XrBool32, indicating if spatial entities are supported by the system. An application can inspect whether the system is capable of spatial entity operations by extending the XrSystemProperties with XrSystemSpatialEntityPropertiesFB structure when calling xrGetSystemProperties. The XR_FB_spatial_entity can provide the XrSpatialAnchorCreateInfoFB whose structure is defined as in [22]:
typedef struct XrSpatialAnchorCreateInfoFB {
 XrStructureType				type;
 const void*						next;
 XrSpace						space;
 XrPosef						poseInSpace;
 XrTime							time;
} XrSpatialAnchorCreateInfoFB;
The space entity identifies world-locked frames of reference. It enables applications to persist the real world location of content over time and contains definitions. The spatial mapping capability can be got and indicated from the runtime when the AR/MR terminals check the value of “supportsSpatialEntity”. When the value is true, the user may get a better experience in comparison with the case that AR/MR UE doesn’t support spatial mapping capability.
[bookmark: _Toc143815966][bookmark: _Toc152695663]6.3.6.2	Metric description
Base on the above analysis in clause 6.3.6.1, the QoE metrics relevant with AR/MR device as listed in Table 6.3.6.2-1 is necessary for assessment of device impact on user experience.
[bookmark: _Ref502062539]Table 6.3.6.2-1: QoE metrics relevant with AR/MR device
	Key
	Type
	Description

	[bookmark: MCCQCTEMPBM_00000027]DeviceInformationList
	List
	A list of device information objects.

	
	Entry
	Object
	A single object containing new device information.

	
	
	resolution
	Object
	Display resolution for each eye

	
	
	
	videowidth
	Integer
	Number of pixels in display width

	
	
	
	videoheight
	Integer
	Number of pixels in display height

	
	
	eyetrackingCapability
	Boolean
	Indication of end device eye tracking capability.

	
	
	handtrackingCapability
	Boolean
	Indication of end device hand tracking capability.

	
	
	spatialmappingCapability
	Boolean
	Indication of end device spatial mapping capability.

	
	
	…
	
	

Editor’s Note: Additional AR/MR device-related QoE metrics are FFS.
[bookmark: _Toc143815967][bookmark: _Toc152695664]6.3.7	Spatial Anchors and Trackables
[bookmark: _Toc143815968][bookmark: _Toc152695665]6.3.7.1	Background
To establish the pose of the virtual objects in the user real environment, the concept of AR anchoring has been defined based on trackable and spatial anchor entities.
A trackable [24] is a model of an element of the real world of which features are available and/or could be extracted. Each trackable provides a local reference space in which a spatial anchor pose can be expressed.
A spatial anchor [24] corresponds to a real-world pose, identified using one or more trackables. Each spatial anchor provides a local reference space in which a pose can be expressed.
Figure 6.3.7.1-1 illustrates an AR anchoring example. A trackable (2D marker type) provides a local reference space. The spatial anchor refers to this trackable, with the pose TRS#1, for accurate positioning relative to the real world. An AR Asset (Virtual chest) is attached to this spatial anchor with the pose TRS#2.
[image: A room with a table and chairs

Description automatically generated]
[bookmark: _Ref141187151]Figure 6.3.7.11: Spatial relationships between trackable, spatial anchor and virtual asset
[bookmark: _Toc143815969][bookmark: _Toc152695666]6.3.7.2	Impact on latencies
AR anchoring has an impact on the user experience, for example, a virtual object may not be correctly positioned in the user's real environment.
AR anchoring latencies also directly impacts the scene start-up latency and the interaction latency:
-	The initial scene start-up latency corresponds to the sum of the first initialization step delay (fetching content entry point, initialization of the scene manager, retrieval of the scene description file, the Anchor Creation Delay, the delay until the trackable is first detected and the Anchor Detection-to-Render-to-Photon delay in the case of a single spatial anchor for the whole scene.
-	The interaction latency corresponds to the Anchor Detection-to-Render-to-Photon latency metric for the first detection of the trackable. After a first detection, the spatial computing function may predict the pose of the trackable even if it is no more tracked, enabling the anchoring, the positioning, and the display of the virtual content (even if the tracking pose prediction error may increase).
[bookmark: _Toc143815970][bookmark: _Toc152695667]6.3.7.3	Retrieval of the AR anchoring information
Once the Scene description file is received by the UE, the scene manager parses the file and retrieves the AR anchoring information required for that AR experience.
The AR anchoring information consists of:
-	The different types of trackable to be supported.
-	For each trackable, the spatial relationship between the trackable, its related spatial anchor and the virtual content to be anchored.
-	Some optional metadata specifying how to handle the AR anchoring process at runtime. E.g., displaying or not the virtual content at a default location until the trackable is detected, defining a minimum available space in the user’s real environment to allow the anchoring of virtual content.
For example, the MPEG-I Scene Description AMD2 [24] detailed and specified an extension to carry the AR anchoring information in a glTF file.
From a QoE metric perspective, the most relevant AR anchoring information is the type(s) of trackable(s) required for that AR experience as some types of trackable may not be supported locally in the UE, leading to Cloud or Edge delegation for the spatial computing function for that trackable. This delegation has a direct impact on the configuration and the measurement of QoE metric.
Several spatial anchors may be defined in one scene to anchor different virtual content. The QoE metric should be measured for each spatial anchor.
[bookmark: _Toc143815971][bookmark: _Toc152695668]6.3.7.4	Anchor Creation Delay (ACD)
This metric corresponds to the delay between the time of the spatial anchor creation request and the time when the related XR space (i.e., the frame of reference in which the 3D coordinates are expressed) is created.
[bookmark: _Toc143815972][bookmark: _Toc152695669]6.3.7.4.1	Measurement of the local Anchor Creation Delay
If the type of trackable is supported locally in the UE, this metric is measured at the interface between the XR runtime and the scene manager. It corresponds to the OP-1 Observation Point.
To measure the ACD with the Khronos OpenXR API [22]:
-	The ACD start time which corresponds to the time of the spatial anchor creation request i.e., when calling the xrCreateReferenceSpace, xrCreateActionSpace, xrCreateSpatialAnchorFB, xrCreateSpatialAnchorMSFT or xrCreateSpatialAnchorFromPersistedNameMSFT function depending on the type of trackable to support.
-	The ACD end time which corresponds to the time when receiving a XR_SUCCESS returned value.
Then the ACD for that spatial anchor = end time - start time.
[bookmark: _Toc143815973][bookmark: _Toc152695670]6.3.7.4.2	Measurement of the remote Anchor Creation Delay
In the case of remote spatial computing (i.e., the type of trackable is not supported locally in the UE), it is relevant to measure the ACD metric.
The measurement procedure of the ACD in case of remote spatial computing is provided in Figure 6.3.7.4-1.

[image:]
[bookmark: _Ref143679913][bookmark: _Ref139908533]Figure 6.3.7.41: The procedure for measuring the ACD with remote XR spatial computing
1)	The UE and the Server configures the spatial anchor creation QoE. A delegation to a XR Spatial Computing server is established for that spatial anchor as the trackable cannot be supported by the UE.
2)	The request of the spatial anchor creation is sent by the UE Scene Graph Handler to the XR Spatial Computing Server. A unique spatial anchor identifier (anchor-id) and the anchor-creation-request-time are recorded.
3)	The spatial anchor creation request is received by the XR server, and it starts to the creation of the anchor.
4)	Once the XR Server has created the spatial anchor, it transmits the acknowledgement to the UE.
5)	The Scene manager receives the acknowledgment of the anchor creation and records the anchor-creation-end-RX-time.
Based on this ACD measurement call flow, the UE can measure the ACD as follows:
Then the ACD for that spatial anchor = anchor-creation-end-time – anchor-creation-start-time.
The Roundtrip ACD for that spatial anchor = anchor-creation-end-RX-time – anchor-creation-request-time.
[bookmark: _Toc143815974][bookmark: _Toc152695671]6.3.7.5	Anchor Detection to Render to Photon QoE
This metric corresponds to the delay between the time of the spatial anchor pose request leading to the detection of the trackable and the time when the virtual content is displayed in the user’s real environment.
[bookmark: _Toc143815975][bookmark: _Toc152695672]6.3.7.5.1	Measurement of the Anchor Detection to Render to Photon (ADRP)
This step occurs each time a detection process of the trackable related to that spatial anchor needs to be launched.
Typically, it occurs:
-	At the beginning, after the spatial anchor creation and after a potential first adjustment of the AR anchoring process
-	When the trackable associated with that spatial anchor was not visible and becomes visible again.

To measure the ADRP with the Khronos OpenXR API [22]:
-	The ADRP start time which corresponds to the time of the spatial anchor pose request leading to the detection of the trackable. The xrLocateSpace() function is used to request a spatial anchor pose at a current or predicted time. The flags XrSpaceLocationFlags in the XrSpaceLocation structure returned by the xrLocateSpace() function are used to check the trackable detection state:
a)	The detection of the trackable corresponds to ((XR_SPACE_LOCATION_POSITION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_POSITION_TRACKED_BIT Flags are changed from unset to set)) AND ((XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT Flags are changed from unset to set))
-	The ADRP end time which corresponds to the actual display time for that frame.
The measurement procedure of the ADRP for UE device with local spatial computing is provided in Figure 6.3.7.4 2.

[image:]
Figure 6.3.7.42: The procedure for measuring the ADRP with local spatial computing
1)	The Scene Graph Handler requests the pose of the spatial anchor to the XR Spatial Compute function. The UE records the anchor-pose-request-time.
2)	The XR Spatial Computing function detects of the trackable related to that spatial anchor.
3)	The XR Spatial Computing function sends the spatial anchor pose to the Scene Graph Handler. The UE records the anchor-detection-time.
4)	The UE updates the scene by enabling the virtual assets related to that spatial anchor and by placing them with respect to the detected spatial anchor pose.
5)	The UE records the render-start-time when the updated scene is ready to be rendered.
6)	The UE renders the scene with the predicted pose related to the predicted display time provided by the XR Runtime.
7)	The UE records the render-end-time when the rendering task is done. The rendered frame is provided to the XR Runtime.
8)	The XR Runtime performs further post-processing such as late pose correction and final composition.
9)	The rendered frame is presented to the display. The actual display time is called T2.actual.
Based on this ADRP measurement procedure, the UE can measure the ADRP as follows:
ADRP for that spatial anchor = T2.actual – anchor-pose-request-time.
[bookmark: _Toc143815976][bookmark: _Toc152695673]6.3.7.6	Anchor Untracked Ratio QoE
This metric corresponds to the ratio between the number of frames where the trackable associated with the spatial anchor is not tracked and the total number of frames during the observation period in which no detection process is launched.
The tracking is lost, so untracked, when the position and/or orientation are no more actively tracked. The XR runtimes may continue to provide valid but untracked position and/or orientation values that are inferred or last-known, so long as it’s still meaningful for the application to use that position and/or orientation.
The Anchor Untracked Ratio (AUR) is measured per trackable, meaning there are as many AUR metrics as trackables. Therefore, a spatial anchor based on several trackables is associated with as many AUR metrics as trackables. All spatial anchors dependent on a trackable are associated with that trackable’s AUR metric.
[bookmark: _Toc143815977][bookmark: _Toc152695674]6.3.7.6.1	Measurement of the Anchor Untracked Ratio (AUR)
This metric is measured at the interface between the XR runtime and the scene manager. It corresponds to the OP-1 Observation Point.
This measurement occurs after the trackable detection. The measurement parameters (e.g., periodicity, observation period) of the AUR metrics have been defined during the configuration step.
Two counters are used to measure the Anchor Untracked Ratio:
-	Nf: length in number of frames of the observation period in which no detection process is launched.
-	Nu: Number of untracked in the observation period. This counter is incremented for each rendered frame where the trackable associated with the spatial anchor is not tracked.
The Khronos OpenXR API [22] may be used to know the tracked/untracked status of a trackable with the xrLocateSpace() function. The flags XrSpaceLocationFlags in the XrSpaceLocation structure returned by the xrLocateSpace() function are used to know the tracked/untracked status of a trackable:
-	The spatial anchor is said as untracked and Nu is incremented when the tracking of the position or orientation are lost but the XR runtime still provides valid inferred or last-known position and orientation:
((XR_SPACE_LOCATION_POSITION_TRACKED_BIT Flag is unset) OR (XR_SPACE_LOCATION_ORIENTATION_TRACKED_BIT Flag is unset)) AND (XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags is set) AND (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags is set)
-	The measurement is aborted when the XR runtime stops to provide valid position or orientation:
(XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags toggles from set to unset) OR (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags toggles from set to unset)
-	New observation period is launched when the XR runtime starts to provide valid position and orientation:
(XR_SPACE_LOCATION_ORIENTATION_VALID_BIT Flags toggles from unset to set) AND (XR_SPACE_LOCATION_POSITION_VALID_BIT Flags toggles from unset to set)
Then the AUR for that spatial anchor = Nu / Nf
[bookmark: _Toc152695675]6.3.8	Pose Correction Error
[bookmark: _Toc152695676]6.3.8.1	Background
There may be a mismatch between the pose used for rendering a frame and the actual pose at the time the frame is displayed. The device runtime may leverage reprojection techniques to align the rendered image with the actual pose at display time. Reprojection errors may introduce various artifacts which may adversely impact the QoE. If a reference frame rendered for the actual pose at the time of display could be obtained, reprojection or pose correction errors could be detected and measured by comparing the reprojected frame with that rendered frame. Generally, in an XR session it is not feasible to obtain such reference frames. Offline calibration may not be able to take into account diverse operating conditions and content.
[bookmark: _Toc152695677]6.3.8.2	Image similarity between reprojected frame and rendered frame
Comparing the reprojected frame, potentially captured at OP-1 and the rendered frame, captured at OP-4 may capture the cumulative effect of pose prediction errors and reprojection errors. Image similarity metrics like Structural Similarity Index (SSIM), Structural Dissimilarity index (DSSIM), Peak Signal to Noise Ration (PSNR), Mean Square Error (MSE) may be used to optimize QoE in conjunction with metrics like pose prediction accuracy and motion-to-render-to-photon latency. As a very simplified example, given low pose prediction error, a high dissimilarity between a rendered frame and its reprojected counterpart may mean that the reprojection was sub-optimal. Conversely, given high pose-prediction error, a high dissimilarity between a rendered frame and its reprojected counterpart may imply good reprojection performance. More insights may be gleaned by, for example, inspecting the orientation and position prediction errors separately. For example, if there is high position prediction error, high image similarity between the rendered and reprojected frames may indicate low efficacy of pose correction as two frames captured from spatially different positions in a 3D scene would generally capture different content. Similarly with low position prediction error and an average orientation prediction error of a few degrees, effective pose correction should result in a high image similarity between the rendered and reprojected frame.
Analysis of image similarity metrics and other QoE metrics aggregated over time may also provide useful information for QoE optimization.

	END of 3rd Change

	4th Change

[bookmark: _Toc119408435][bookmark: _Toc128059563][bookmark: _Toc143815982][bookmark: _Toc152695682]8	Conclusions and Recommendations
Editor’s Note: Provide recommendation on normative work for new XR QoE metrics based on the findings in this study
This study provides QoE metrics monitoring and definition for Xtended Reality (XR) device. In order to address this, available information in other organizations such as the ITU-T, IEEE, MPEG-I groups are collected, and the relevant observed information based on the AR/MR QoE reference model and observation points are discussed and presented. Some AR/MR QoE metrics are introduced, e.g. registration latency, tracking pose prediction error, etc. The information may be used by other 3GPP groups in order to perform the AR/MR QoE measurements and report the measurements to the 5G network for network optimization.
Based on the details in the above, the following next step is proposed as below:
Specify the AR/MR QoE metrics based on the discussion on clause 6.3 in TS 26.119.

	END of 4th Change

	5th Change

[bookmark: _Toc119408436][bookmark: _Toc128059564][bookmark: _Toc143815983][bookmark: _Toc152695683]Annex <A> (informative):
<Normative annex for a Technical Specification>
Start each annex on a new page.
Annexes are labelled A, B, C, etc. and designated either "normative" or "informative" depending on their content.
Normative annexes only to appear in Technical Specifications. Use style "Heading 8".

	END of 5th Change

image1.emf
XR Baseline ClientUser inputMedia Access FunctionXR RuntimeCamerasSensorDisplaysPresentation EngineCompositionRuntime functions (tracking, SLAM)Visual Renderer Audio Renderer Audio SubsystemSpeakersScene ManagerVideo CodecsAudio CodecsMetadata FormatsXR Source ManagementXR ApplicationActuatorsIF-1aIF-3IF-9IF-8Content Delivery ProtocolsMedia Session HandlerIF-5IF-6IF-2IF-7Metrics collection & reporting 5G System (Uu)MicrophonesAPI-1API-2API-7API-6IF-10IF-1bIF-1cIF-4API-6IF-7IF-6OP-2OP-3OP-4OP-1

Microsoft_Visio_Drawing.vsdx
XR Baseline Client
User input

Media Access Function
XR Runtime
Cameras
Sensor
Displays
Presentation Engine
Composition
Runtime functions (tracking, SLAM)
Visual Renderer
Audio Renderer
Audio Subsystem
Speakers
Scene Manager
Video Codecs
Audio Codecs
Metadata Formats
XR Source Management
XR Application
Actuators
IF-1a
IF-3
IF-9
IF-8
Content Delivery Protocols
Media Session Handler
IF-5
IF-6
IF-2
IF-7
Metrics collection & reporting
5G System (Uu)
Microphones
API-1
API-2
API-7
API-6
IF-10
IF-1b
IF-1c
IF-4
API-6
IF-7
IF-6
OP-2
OP-3
OP-4
OP-1

image2.emf
Media Access functionBasic AR/MR ApplicationAR Runtime on DeviceAR Runtime APISensorsCamerasMicrophonesXR Spatial DescriptionServerXR Spatial DescriptionCacheSpatial Description Contribution/Updates(personalized and shared)XR Spatial ComputeFunctionsXR Spatial Description Streaming/DownloadContextual Requests

Microsoft_Visio_Drawing1.vsdx
Media Access function
Basic AR/MR Application
AR Runtime on Device
AR Runtime API
Sensors
Cameras
Microphones
XR Spatial Description
Server
XR Spatial Description
Cache
Spatial Description Contribution/Updates
(personalized and shared)

XR Spatial Compute
Functions
XR Spatial Description Streaming/Download

Contextual Requests

image3.emf
5G STAR UEMedia Access FunctionsMedia ClientSensorsCamerasDisplaySpeakersAR/MR ApplicationUser InputAR Scene ManagerAR RuntimeM8ImmersiveMedia DecodersImmersive AudioRendererSoundfield MappingContent DeliveryMedia Session Handler5G System(Uu)PoseCorrectionImmersive VisualRendererCompositorScene Graph Handler2D CodecsXR Spatial ComputeAR Runtime API5G System(Server and Compute)AR/MRApplicationProviderScene DescriptionDeliveryMedia AF5G System(gNB)Media ASAR Scene AR FunctionsM4M5XR Spatial Description Delivery

Microsoft_Visio_Drawing2.vsdx
5G STAR UE
Media Access Functions
Media Client
Sensors
Cameras
Display
Speakers
AR/MR Application
User Input
AR Scene Manager
AR Runtime
M8
Immersive
Media Decoders
Immersive Audio
Renderer
Soundfield Mapping
Content  Delivery
Media Session Handler
5G System
(Uu)
Pose
Correction
Immersive Visual
Renderer
Compositor
Scene Graph Handler
2D Codecs
XR Spatial Compute
AR Runtime API
5G System
(Server and Compute)
AR/MR
Application
Provider
Scene Description
Delivery
Media AF
5G System
(gNB)
Media AS
AR Scene
AR Functions
M4
M5
XR Spatial Description Delivery

image4.wmf
X

R

R

u

n

t

i

m

e

X

R

A

p

p

l

i

c

a

t

i

o

n

E

d

e

g

e

A

p

p

l

i

c

a

t

i

o

n

S

e

r

v

e

r

1

:

P

r

e

d

i

c

t

R

T

T

2

:

q

u

e

r

y

f

o

r

t

h

e

n

e

x

t

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

3

:

r

e

t

u

r

n

t

h

e

n

e

x

t

d

i

p

l

a

y

t

i

m

e

4

:

p

r

e

d

i

c

t

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

b

a

s

e

d

o

n

R

T

T

a

n

d

f

r

a

m

e

r

a

t

e

5

:

q

u

e

r

y

f

o

r

a

p

r

e

d

i

c

t

e

d

p

o

s

e

a

t

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

6

:

p

o

s

e

p

r

e

d

i

c

t

i

o

n

,

c

o

m

p

l

e

t

e

d

a

t

(

T

1

)

7

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

7

b

i

s

:

C

o

m

p

u

t

e

a

c

c

u

r

a

c

y

l

e

v

e

l

A

L

.

p

r

e

d

i

c

t

e

d

1

8

:

p

r

e

d

i

c

t

e

d

p

o

s

e

P

.

p

r

e

d

i

c

t

e

d

1

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

9

:

r

e

n

d

e

r

f

o

r

p

r

e

d

i

c

t

e

d

p

o

s

e

(

P

.

p

r

e

d

i

c

t

e

d

1

)

1

0

:

r

e

t

u

r

n

r

e

n

d

e

r

e

d

f

r

a

m

e

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

1

1

:

s

e

n

d

r

e

n

d

e

r

e

d

f

r

a

m

e

t

o

s

w

a

p

c

h

a

i

n

,

e

.

g

.

,

v

i

a

x

r

R

e

l

e

a

s

e

S

w

a

p

c

h

a

i

n

I

m

a

g

e

(

)

,

a

n

d

p

r

e

d

i

c

t

e

d

i

n

i

t

i

a

l

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

)

,

e

.

g

.

,

v

i

a

x

r

E

n

d

F

r

a

m

e

(

)

1

2

:

q

u

e

r

y

f

o

r

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

,

e

.

g

.

,

v

i

a

x

r

W

a

i

t

F

r

a

m

e

(

)

1

3

:

r

e

t

u

r

n

p

r

e

d

i

c

t

e

d

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

(

T

2

.

p

r

e

d

i

c

t

e

d

2

)

1

4

:

r

e

p

r

o

j

e

c

t

i

o

n

1

5

:

q

u

e

r

y

f

o

r

t

h

e

p

o

s

e

a

t

u

p

d

a

t

e

d

d

i

s

p

l

a

y

t

i

m

e

T

2

.

p

r

e

d

i

c

t

e

d

2

,

e

.

g

.

,

v

i

a

x

r

L

o

c

a

t

e

V

i

e

w

s

(

)

1

6

:

p

o

s

e

e

s

t

i

m

a

t

i

o

n

1

7

:

r

e

t

u

r

n

a

p

o

s

e

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

2

)

1

8

:

C

o

m

p

u

t

e

t

i

m

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

T

2

.

p

r

e

d

i

c

t

e

d

1

-

T

2

.

p

r

e

d

i

c

t

e

d

2

)

,

C

o

m

p

u

t

e

p

o

s

e

e

r

r

o

r

e

s

t

i

m

a

t

e

(

P

.

p

r

e

d

i

c

t

e

d

1

-

P

.

p

r

e

d

i

c

t

e

d

2

)

a

c

c

o

r

d

i

n

g

t

o

t

h

e

a

g

g

r

e

g

a

t

e

d

a

c

c

u

r

a

c

y

l

e

v

e

l

A

L

.

p

r

e

d

i

c

t

e

d

2

a

c

t

u

a

l

d

i

s

p

l

a

y

t

i

m

e

i

s

T

2

.

a

c

t

u

a

l

h

t

t

p

s

:

/

/

g

i

t

l

a

b

.

c

o

m

/

m

s

c

-

g

e

n

e

r

a

t

o

r

v

8

.

2

oleObject1.bin

image5.emf
NowNext predicted display time1/FrameRateTimeRTT1/FrameRateT2.predicted1Nowdisplay timeTimeT2.predicted2display timedisplay timeAt time of step 4:At time of step 13:

Microsoft_Visio_Drawing3.vsdx
Now
Next predicted display time
1/FrameRate
Time
RTT
1/FrameRate
T2.predicted1
Now
display time
Time
T2.predicted2
display time
display time
At time of step 4:
At time of step 13:

image6.jpg

image7.png

image8.emf
XR RuntimeScene GraphHandlerUEXR spatial computingXR Server1. Configuration of the anchor creation QoE3. Create the spatial anchor5. Receive the acknowledgmentanchor-creation-request-timeanchor-creation-start-timeanchor-creation-end-Rx-timeanchor-creation-end-time2. Request the spatial anchor creation4. Acknowledge of the spatial anchor creationRoundtrip Anchor Creation Delay (Roundtrip ACD)

Microsoft_Visio_Drawing4.vsdx
XR
Runtime
Scene Graph
Handler
UE
XR spatial computing
XR Server

1. Configuration of the anchor creation QoE
3. Create the spatial anchor
5. Receive the acknowledgment
anchor-creation-request-time
anchor-creation-start-
time
anchor-creation-end-Rx-time
anchor-creation-end-time
2. Request the spatial anchor creation
4. Acknowledge of the spatial anchor creation
Roundtrip Anchor Creation Delay (Roundtrip ACD)

image9.png

image10.emf
DisplayComposition& warpingXR spatialcomputingVisual rendererScene GraphHandlerUEXR Runtime2. Detect trackable related to the spatial anchor1. Request spatial anchor pose3. Spatial anchor pose6. Render the scene4. Update the scene5. Updated scene7. Rendered frame8. Post process9. PresentationAnchor Dection to Render to Photon (ADRP)anchor-detection-timerender-start-timerender-end-timeActual display-timeT2.actualanchor-pose-request-time

Microsoft_Visio_Drawing5.vsdx
Display
Composition
& warping
XR spatial
computing
Visual
renderer
Scene Graph
Handler
UE
XR Runtime

2. Detect trackable related to the spatial anchor
1. Request spatial anchor pose
3. Spatial anchor pose
6. Render the scene
4. Update the scene
5. Updated scene
7. Rendered frame
8. Post process
9. Presentation
Anchor Dection to Render to Photon (ADRP)
anchor-detection-time
render-start-
time
render-end-time
Actual display-time
T2.actual
anchor-pose-request-time

