Page 4
Draft prETS 300 ???: Month YYYY
SA4-e (AH) RTC SWG post 121	Tdoc S4aR230016
14th – 15th December 2022

Agenda item: 	4.3
Source: 	China Mobile Com. Corporation
Title: 	[iRTCW] A Use Case for XR Streaming over WebRTC
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Introduction
TR 26.928 identified a use case and requirements on AR Streaming (A.21 in TR 26.928). A VoD stream (may be 2D or 3D content) can be synched among a group of the users. Any user within the group can pause, rewind or fast forward the content, and this affects the playback for all the members of the group. This use case requires a streaming server that can distributes and ensures synchronized content playback for multiple AR users.
In this contribution, we proposed a XR Streaming solution over WebRTC peer-to-peer communication framework.
1. A Use Case for XR Streaming over WebRTC
2.1 Components and Functionalities
[image: 3GPP PIC01]
XR Application: The XR Application runs the game logic and renders every frame on a remote server, such as a virtual machine provided by a cloud hosting services. It continuously encodes the rendered video frames along with the game audio into a media stream, and distribute that stream to connected browsers over WebRTC direct peer-to-peer connections.
Signaling and Web Server: The Signaling and Web Server negotiates connections between browsers and the XR Application for providing browsers with the HTML and JS environment that plays back the media stream.
STUN and TURN Severs: The STUN and TURN Severs tell each endpoint what its publicly visible IP address and make up the ICE framework.
XR Clients: The XR Clients (e.g. mobile phones, AR devices) allow users to control the playout of the media stream (e.g. pause, rewind, fast-forward) by sending keyboard, mouse, touch, and custom events back to the XR Application.

2.2 The Signaling Process
The signaling process is summarized below:
[image: 3GPP PIC02]
(1) The XR Application sends Offer SDP to the Signaling and Web Server.
(2) The XR Client checks the Signaling and Web Server for unprocessed Offer SDPs.
(3) The XR Client sends Answer SDP to the Signaling and Web Server.
(4) The XR Application checks the Signaling and Web Server for unprocessed Answer SDPs.
(5) The XR Application sends ICE Candidate to the Signaling and Web Server.
(6) The XR Client checks the Signaling and Web Server for unprocessed ICE Candidates.
(7) The XR Clients sends ICE Candidate to the Signaling and Web Server.
(8) The XR Application checks the Signaling and Web Server for unprocessed ICE Candidate.
(9) The connection is established between the XR Application and the XR Client; the XR Application can send media streams to the XR Client; the XR Client can send users’ commands back to the XR Application.
1. Proposal
We propose to include section 2 of this document into clause 5.2 of the permanent document as a use case for discussion.
1. References
[1] Unity Unity Render Streaming https://docs.unity3d.com/Packages/com.unity.renderstreaming@3.1/manual/index.html
[2] [bookmark: _GoBack]Unreal Pixel Streaming https://docs.unrealengine.com/4.27/en-US/SharingAndReleasing/PixelStreaming/PixelStreamingOverview/
- 12/13 -
image1.png
XR Clients

The Rmote Server

XR Application

image2.png
Client

The XR

The Signaling
and Web Server

The XR

Application

2. Offer SDP
3. Answer SDP

1. Offer SDP
4. Answer SDP

5. ICE Candidate

6. ICE Candidate

T Y N i
i |
i |
i |
i |
i |
i |
i |
i |
i |
i |
i |
1 i
i |

w. 1
2 |
= i
T]
g |
[1
O i
m —~1
=

O 3]
i 7| 2
7." < .l“
' 2l 9
El 8

" 2| 2
: S e
i 2| £
! sl i
1 ® s
' > 3
1 54 oS!
i 3 b
B “r Z| M
|

i wl 2!

“ g E!

I 5 i

: = g

“ %} m_

z |
-1

|

“ = 8

Q| =

= - T
= o ol
=N o
[]

O |
E“ '
Q. |

i |

0 1

i |

i |

i |

i |

i |

i |

i |

i |

i |

i |

i i

v v

