Page 4
Draft prETS 300 ???: Month YYYY
TSG SA4 Meeting #120-e	Tdoc S4-221050
17th – 26th August 2022

Agenda item: 	4.4
Source: 	Qualcomm Inc.
Title: 	Additional APIs to support IMS data channels
Document for	Discussion and Agreement
1. [bookmark: _Toc504713888]Background
TS 26.114 [1] describe that data channels “allow for real-time interaction in parallel to the conversational media”. A User interface in MTSI client “interacts with a web page and related script received through a downlink data channel to handle the data channel I/O and data formatting.” The data channels are to “use SCTP (RFC 4960) over DTLS (RFC 8261), used as specified for WebRTC data channels (RFC 8831).” The web page, any related script and other resources received through a downlink data channel is sometimes called a Web Application, or WebApp.
RFC 8825 [2] indicates that the WebRTC effort consists of two major parts, each consisting of multiple documents:
· A protocol specification, done in the IETF
· A JavaScript API specification, defined in a series of W3C documents.
RFC 8825 continues to conclude that “these two specifications aim to provide an environment where JavaScript embedded in any page… is able to set up communication using audio, video, and auxiliary data, as long as the browser supports these specifications.” For the MTSI service, only the data transport is to be used, while audio and video transport is as specified in TS 26.114 [1]. It is well accepted that the WebApps that use IMS data channels are to use the WebRTC JavaScript APIs typically available on browsers on the UE platform.
The JavaScript Session Establishment Protocol (JSEP) (RFC 8829) captures how these WebRTC JavaScript APIs are to be used by to negotiate the SDP parameters for Real-Time WebRTC applications in general, and for IMS data channels applications in particular. Figure 1 shows the JSEP state machines and Figure 2 illustrates how the JSEP state transitions map to the WebRTP APIs, the setLocal/Remote APIs. The actual peer-to-peer exchanges of SDP offers and answers are not in the scope of JSEP and are typically handled by WebApp specific protocols.
[image:]
Figure 1: The JESEP state machine
[image:]
Figure 2: Mapping of JSEP state machine to WebRTC APIs
Extending the framework from Figure 2 to the DCMSTI client, it is understood that the MTSI signaling is to be used to negotiate IMS data channels, not an application signaling protocol. Figure 3 illustrates two alternatives:
(a) This option extends the W3C WebRTC framework to provide interfaces to the UE MTSI client to convey SDP information for IMS data channels an application may wish to establish. This is not a likely effort to be taken by W3C.
(b) This option recognizes that the W3C framework alone is not enough to enable applications to negotiate IMS data channels as part of the MTSI service and suggests that additional APIs are needed for applications to convey the SDP parameters for the data channels it wants to establish. APIs are also needed:
· To coordinate with the bootstrap app(s) on alerting the user on which app(s) the remote user has selected for download.
· If the user accepts the call upgrade, to proceed with the app(s) download(s), including passing the SDP offer so a corresponding SDP is generated.
· To receive the SDP answer with associated AP IDs the MTSI client can use to validate that the proper answer for all the offered data channels have been received.
[image:]
[image:]
Figure 3: Integrating SDP info with MTSI SDP for a call
1. Proposal
Successful deployment of WebApps using IMS data channels integrated into an MTSI call requires that the downloaded apps can leverage UE platform frameworks to negotiate and use the transport services in the UE platform for their data transport. The existing W3C WebRTC APIs should be enough to enable OTT applications, but it is not sufficient to enable IMS data channel apps. It is therefore necessary that standard APIs be defined between these applications and the MTSI client on a given UE for the signaling of IMS data channels the apps want to establish.
The APIs available to the app should be in the programmatic framework these apps use, i.e., JavaScript APIs. Similarly, for these WebEngines to interact with the MTSI clients, platform/OS specific APIs (e.g., telephony APIs) would also need to be defined to connect these JS APIs to the MTSI clients.
It is proposed that SA4 engages on this API definition effort, possibly coordinating with other standards bodies that would support such efforts, e.g., GSMA, W3C, etc.
1. References
[1]		3GPP TS 26.114: “IMS Multimedia Telephony Media handling and interaction”
[2] IETF RFC 8825: “Overview: Real-Time Protocols for Browser-Based Applications”
- 12/13 -
image1.emf
have-remote-

offer

have-local-

offer

have-remote-

pranswer

have-local-

pranswer

stable

setRemote(ANSWER)

setLocal(ANSWER)

setRemote(OFFER)

setLocal(ANSWER)

setRemote(ANSWER)

setLocal(OFFER)

setLocal(OFFER)

setRemote(OFFER)

setLocal(PRANSWER)

setLocal(PRANSWER)

setRemote(PRANSWER)

setRemote(PRANSWER)

image2.emf
Browser

(WebEng)

App

Launched

WebRTC

App (JS)

App

Server

AppSignaling

(Offer)

RTCPeerConn[]

Browser

(WebEng)

WebRTC

App (JS)

RTCPeerConn[]

createDataChanl()

createOffer()

setLocalDescp()

createAnswer()

setRemoteDescp()

createDataChanl()

setLocalDescp()

AppSignaling

(Answer)

DTLS/SCTP

onDataChanl()

onDataChanl()

RTCDC.send(data)

RTCDC.event(data) RTCDC.send(data)

RTCDC.event(data)

setRemoteDescp()

image3.emf
Browser

(WebEng)

App

Launched

IMS DC

App (JS)

INVITE

(SDPo)

RTCPeerConn()

Browser

(WebEng)

IMS DC

App (JS)

RTCPeerConn()

createDataChanl()

createOffer()

setLocalDescp()

createAnswer()

setRemoteDescp()

createDataChanl()

setLocalDescp()

DTLS/SCTP

onDataChanl()

onDataChanl()

RTCDC.send(data)

RTCDC.event(data) RTCDC.send(data)

RTCDC.event(data)

setRemoteDescp()

App

Launched

WE-IMS

WE-IMS

(SDPa)

183

(SDPa)

LaunchApp(AppId)

(a)

Merge

answer

to SDP

App-IMS

(SDPo w/

AppId)

WE-IMS

(SDPo w/

AppId)

Merge

offer to

SDP

MTSI MTSI

WebRTC API

New API

Alert User

image4.emf
Browser

(WebEng)

App

Launched

IMS DC

App (JS)

MTSI

INVITE

(SDPo)

RTCPeerConn()

Browser

(WebEng)

IMS DC

App (JS)

RTCPeerConn()

createDataChanl()

createOffer()

setLocalDescp()

createAnswer()

setRemoteDescp()

createDataChanl()

setLocalDescp()

DTLS/SCTP

onDataChanl()

onDataChanl()

RTCDC.send(data)

RTCDC.event(data)

RTCDC.send(data)

RTCDC.event(data)

setRemoteDescp()

App

Launched

App-IMS

(SDPo w/

AppId)

183

(SDPa)

MTSI-App(SDPo

w/ AppId)

(b)

Merge

answer

to SDP

Merge

offer to

SDP

MTSI

MTSI-

App(SDPa)

MTSI-

App(SDPa)

WebRTC API

New API

Alert User

