

	
3GPP TSG-S4 Meeting # <MTG_SEQ><MTG_TITLE>	<TDoc#>
 <Location>, <Country>, <Start_Date> - <End_Date>
	CR-Form-v12.1

	CHANGE REQUEST

	

	
	<Spec#>
	CR
	<CR#>
	rev
	<Rev#>
	Current version:
	<Version#>
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	<Title>

	
	

	Source to WG:
	<Source_if_WG>

	Source to TSG:
	<Source_if_TSG>

	
	

	Work item code:
	<Related_WIs>
	
	Date:
	<Res_date>

	
	
	
	
	

	Category:
	<Cat>
	
	Release:
	<Release>

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier 													release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
…
Rel-15	(Release 15)
Rel-16	(Release 16)
Rel-17	(Release 17)
Rel-18	(Release 18)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

	First Change

Scene Description-based Overlay
Scene Description
Overview
A scene graph is a directed acyclic graph, usually just a plain tree-structure, that represents an object-based hierarchy of the geometry of a scene. The leaf nodes of the graph represent geometric primitives such as polygons. Each node in the graph holds pointers to its children. The child nodes can among others be a group of other nodes, a geometry element, a transformation matrix, etc.
Spatial transformations are attached to nodes of the graph and represented by a transformation matrix.
This structure of scene graphs has the advantage of reduced processing complexity, e.g. while traversing the graph for rendering. An example operation that is simplified by the graph representation is the culling operation, where branches of the graph are dropped from processing, if deemed that the parent node’s space is not visible or relevant (level of detail culling) to the rendering of the current view frustum.
glTF 2.0
glTF 2.0 is a new standard that was developed by Khronos to enable Physically Based Rendering. glTF 2.0 offers a compact and low-level representation of a scene graph. glTF 2.0 offers a flat hierarchy of the scene graph representation to simplify the processing. glTF 2.0 scene graphs are represented in JSON to ease the integration in web environments. The glTF 2.0 specification is designed to elimate redundancy in the representation and to offer efficient indexing of the different objects in the scene graph.
The structure of a glTF 2.0 scene graph document is arranged as follows:

[image:]

The scene graph itself has the following structure:
[image:]

Scene Description of ITT4RT Session
Scene Graphs make it very simple to compose scenes for an immersive presentation. The composition may be performed at an MRF or MCU. Alternatively, a designated party in the conference is responsible for creating the initial scene description and sharing it with all other parties in the call. This party may be the one that creates the main VR content, for instance, the party that is in the conference room with a VR capture.
Each party may contribute one or more nodes to the Scene Graph. Each nodes comes with its associated transformation (in form of a matrix, or individual translation and rotation operations), to place that node appropriately in the scene.
Referencing Media Streams
The scene description references media streams from the conferencing session that are used as components of nodes in the scene. An example could be a video stream of a conference participant that is to be displayed in a rectangular region in the 3D scene. The following URI format shall be used for this purpose:
url=”rtp://” fqdn_or_ip “/” call_id “/” ssrc “/” mid
where fqdn_or_ip represent the domain name or ip address of the MRF or SIP proxy that manages the call. If none is used, it represents the domain name or ip address of the SIP address of the host of the call. call_id provides a unique identifier for the current call or conference. ssrc represents the synchronization source of the owner/sending participant of the media stream. Finally, mid represents media session identifier as provided in the SDP.
Processing
Parties of an ITT4RT conference may establish direct peer-to-peer WebSocket channels with each other or a connection may be offered by an MRF to all parties. The WebSocket channel shall use the text frame format.
In a scene, node names shall be unique and shall be declared in the SDP to ensure there are no naming conflicts in nodes provided by different parties in a call. Nodes in the scene description may reference external media streams, such as other media streams that are declared in the SDP.
A receiver may mask nodes from certain parties in the rendering process, e.g. based on user input.
The MRF is by default the owner of the master scene graph, i.e. the one that sets the coordinate system and in which all other nodes are composited. It is also the one that defines the main camera in the scene.
In the absence of a centralized MRF, the parties in the call may select one party to provide the main scene description, for example by selecting the one that provides the VR content or the organizer of the call.
Overlays can be 2D or 3D objects that are placed within the scene. The geometry of the overlay and its texture are defined by the node that corresponds to that overlay object. A simple example is a set of slides that are played in a rectangular area that is shown inside the VR scene. In this case, the geometry will be a rectangle and the texture might be coming from a video media stream. The rectangle is placed in the scene. For viewport-dependent overlay, the position of the rectangle is locked to the camera direction.
Example Scene Description with Overlays
The following example depicts a scene description with a sphere projection 360 video and two overlay streams.
	{
 "asset": {
 "version": "2.0"
 },
 "scenes": [
 {
 "name": "Scene",
 "nodes": [
 0,
 1,
 2
]
 }
],
 "scene": 0,
 "nodes": [
 {
 "name": "Sphere",
 "mesh": 0
 },
 {
 "matrix": [
 1, 0,0,0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, -3, 1
],
 "name": "Overlay1",
 "mesh": 1
 },
 {
 "matrix": [
 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 3, 1
],
 "name": "Overlay2",
 "mesh": 2
 }
],
 "bufferViews": [
 {
 "buffer": 0,
 "byteOffset": 0,
 "byteLength": 6732,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 6732,
 "byteLength": 6732,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 13464,
 "byteLength": 4488,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 17952,
 "byteLength": 5760,
 "target": 34963
 },
 {
 "buffer": 0,
 "byteOffset": 23712,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23760,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23808,
 "byteLength": 32,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 23840,
 "byteLength": 12,
 "target": 34963
 },
 {
 "buffer": 0,
 "byteOffset": 23852,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23900,
 "byteLength": 48,
 "target": 34962,
 "byteStride": 12
 },
 {
 "buffer": 0,
 "byteOffset": 23948,
 "byteLength": 32,
 "target": 34962,
 "byteStride": 8
 },
 {
 "buffer": 0,
 "byteOffset": 23980,
 "byteLength": 12,
 "target": 34963
 }
],
 "buffers": [
 {
 "byteLength": 23992,
 "uri": "decoded-file.bin"
 }
],
 "accessors": [
 {
 "bufferView": 0,
 "componentType": 5126,
 "count": 561,
 "max": [
 5,
 5,
 5
],
 "min": [
 -5,
 -5,
 -5
],
 "type": "VEC3"
 },
 {
 "bufferView": 1,
 "componentType": 5126,
 "count": 561,
 "max": [
 1,
 1,
 1
],
 "min": [
 -1,
 -1,
 -1
],
 "type": "VEC3"
 },
 {
 "bufferView": 2,
 "componentType": 5126,
 "count": 561,
 "max": [
 1.015625,
 1
],
 "min": [
 -0.015625,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 3,
 "componentType": 5123,
 "count": 2880,
 "max": [
 560
],
 "min": [
 0
],
 "type": "SCALAR"
 },
 {
 "bufferView": 4,
 "componentType": 5126,
 "count": 4,
 "max": [
 1.5,
 0.5,
 0
],
 "min": [
 -1.5,
 -0.5,
 0
],
 "type": "VEC3"
 },
 {
 "bufferView": 5,
 "componentType": 5126,
 "count": 4,
 "max": [
 0,
 0,
 1
],
 "min": [
 0,
 0,
 1
],
 "type": "VEC3"
 },
 {
 "bufferView": 6,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 1
],
 "min": [
 0,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 7,
 "componentType": 5123,
 "count": 6,
 "max": [
 3
],
 "min": [
 0
],
 "type": "SCALAR"
 },
 {
 "bufferView": 8,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 0.5,
 0
],
 "min": [
 -1,
 -0.5,
 0
],
 "type": "VEC3"
 },
 {
 "bufferView": 9,
 "componentType": 5126,
 "count": 4,
 "max": [
 0,
 0,
 1
],
 "min": [
 0,
 0,
 1
],
 "type": "VEC3"
 },
 {
 "bufferView": 10,
 "componentType": 5126,
 "count": 4,
 "max": [
 1,
 1
],
 "min": [
 0,
 0
],
 "type": "VEC2"
 },
 {
 "bufferView": 11,
 "componentType": 5123,
 "count": 6,
 "max": [
 3
],
 "min": [
 0
],
 "type": "SCALAR"
 }
],
 "materials": [
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 0
 }
 },
 "doubleSided": true,
 "name": "background"
 },
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 1
 }
 }
 },
 {
 "pbrMetallicRoughness": {
 "metallicFactor": 0,
 "baseColorTexture": {
 "index": 2
 }
 }
 }
],
 "meshes": [
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 0,
 "NORMAL": 1,
 "TEXCOORD_0": 2
 },
 "indices": 3,
 "material": 0
 }
]
 },
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 4,
 "NORMAL": 5,
 "TEXCOORD_0": 6
 },
 "indices": 7,
 "material": 1
 }
]
 },
 {
 "primitives": [
 {
 "mode": 4,
 "attributes": {
 "POSITION": 8,
 "NORMAL": 9,
 "TEXCOORD_0": 10
 },
 "indices": 11,
 "material": 2
 }
]
 }
],
 "extensions": {
 "MPEG_media": {
 "media": [
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/809800/1"
 }
]
 },
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/8034300/2"
 }
]
 },
 {
 "alternatives": [
 {
 "mimeType": "video/H265",
 "uri": "rtp://server.example.com/9879872983/64993/3"
 }
]
 }
]
 }
 }
}

image1.emf

.json

Node hierarchy, materials, lights, cameras

.bin

• Geometry: vertices and indices
• Animation: key-frames
• Skins: inverse-bind matrices

.glsl

Shaders

.png, .jpg, …

Textures

.json

Node hierarchy, materials, lights, cameras

.bin

•Geometry: vertices and indices

•Animation: key-frames

•Skins: inverse-bind matrices

.glsl

Shaders

.png, .jpg, …

Textures

image2.emf

scene

node

camera mesh light

accessor

bufferView

buffer

material

technique texture

samplerimageprogram

shader

1

2

1 11

1 *

*
*

*
1

1

*

*

*
animation

skin
*

1

scene

node

camera

mesh

light

accessor

bufferView

buffer

material

technique texture

sampler

imageprogram

shader

1

2

1

1

1

1

*

*

*

*

1

1

*

*

*

animation

skin

*

1

