

	
[bookmark: OLE_LINK2]SA4-MBS SWG post 119-e (2022-05-27 - Online)	S4aI221345
E-meeting, 30th June 2022	
	CR-Form-v12.0

	PSEUDO CHANGE REQUEST

	

	
	26.806
	CR
	pseudo
	rev
	-
	Current version:
	0.2.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:	
	[FS_SmarTAR] Media Handling for Tethered Glasses

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	

	
	

	Work item code:
	FS_SmarTAR
	
	Date:
	29/06/2022

	
	
	
	
	

	Category:
	B
	
	Release:
	8

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	

	
	

	Summary of change:
	

	
	

	Consequences if not approved:
	

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

	
	

	This CR's revision history:
	

Page 1

===== CHANGE =====
[bookmark: _Toc2086442][bookmark: _Toc103923381]4.4	Media Handling assumptions on Tethered Glasses
Based on the guiding use case in clause 4.2.2 as well as the discussions in TR 26.998 [2], this clause identifies media capabilitities for AR glasses and the expected media handling.
Looking at existing AR Glasses, based on the study in TR 26.998 [2] and based on information from chipset manufacturers on existing and emerging devices, an AR Glass designed for AR experiences does integrate complex functionalities and many of those relate to capabilities. Figure 4.4-1 is a picture providing an overview of an AR glass.
Hinge
SoC Media
Connectivity
Eye Tracking + Camera/Sensor Aggregator

[bookmark: _Ref100739370][bookmark: _Ref100739368]Figure 4.4-1 - Overview of an AR glass
 Typical functions of such a AR glass consists of:
· Peripheries including
· Displays
· Cameras
· Microphones
· Sensors
· Camera/Sensor Aggregators
· Perception functionality: Eye Tracking, Face Tracking, etc.
· SoC Media
· Display Processing
· GPU functionalities: Composition/Reprojection
· Decoding
· Decryption
· Camera Front ends
· Perception functionality: 6DoF, etc.
· Encoding
· Connectivity
· Wi-Fi, Bluetooth, 5G, etc.
An interesting aspect to consider from the above is that the device consists of different thermal islands, hence division in multiple chips in the headset is highly desirable. This means that both minimizing the power consumption per thermal island as well as minimizing the overall power consumption is an essential design constraint for the device battery life. Such type of devices require to partition workloads to remote devices or the cloud to some extent to balance the power load. Based on this, media capabilities are also possibly required on UE that acts as a hub for a tethered glass. Architectures and processing for this will the main subject of discussion in this Technical Report.
It should be noted that such AR glasses are predominantly served with media that can directly be rendered by the peripheries, or produce media captured on the device and sent to remote processing. Initial System-on-Chip (SoC) media will likely rely on existing hardware, for example from lower end mobile chipsets. Some people consider XR even a hack that uses existing components in a smart manner. However, a core aspect of XR experiences different from traditional mobile devices is the concurrent operation of multiple encoders and/or decoders to address different sensors, eye buffers, layers and so on, as well as the rendering to GPU instead of directly going to the display.
Only over time, such hardware will get added specific functionalities, but not in the near and mid-term. Expected in the future are higher render and display resolutions, multi-layer composition, etc.
Given that many functionalities are defined through Khronos OpenXR [X], defining capabilities for example by mandating or recommending support of certain APIs or parameter settings on API may be relevant. In some cases it may not even be possible to define capabilities, but for example rely on test signals and benchmarking requirements that estimate the performance of a device.
Figure 4.4-2 provides the technical architecture of a typical glass-based device.

[bookmark: _Ref103839657]Figure 4.4-2 – Typical glass-based device architecture
The AR/MR Application is responsible for orchestrating the various device resources to offer the AR experience to the user. In particular, the AR/MR Application can leverage three main internal components on the device which are:
· The Media Access Functions (MAF)
· The XR Runtime
· The XR Scene Manager
The AR/MR Application can communicate with those three components via dedicated APIs called the MAF-API, the XR Scene Manager API and the XR Runtime API. Among other functionalities, those APIs enables the AR/MR Application to discover and query the media capabilities in terms of support as well as available resources at runtime.
The XR runtime features several sensors and user controllers relevant for AR experiences such as cameras, microphones, speakers, display and generic user input. The XR Runtime typically also deals with the composition of primitive buffers that are mapped to the eye buffer display taking into account device characteristics as well as the latest pose information to apply late stage reprojection.
The XR scene manager is typically very lightweight and with no or very limited GPU capabilities. It maps raw media primitive buffers such as texture and depth information
Once the AR/MR application is running, the downlink media is accessed by the MAF in compressed form and then from then MAF to the AR Scene Manger in primitives. The device may also establish an uplink data flow from the AR Runtime to the MAF wherein the data may be in an uncompressed form and then from the MAF to the remote device, it is typically compressed the data in order to facilitate the expected transmission over the network.
In order to analyze the use cases and tethering architectures in more details, the following assumptions are made:
· Video Playback and decoding: H.265 Main 10 Profile with maximum processing: up to 8,294,400 Macroblocks per second (corresponding to 8192x4320 @ 60fps)
· Video recording and encoding: H.265 Main 10 Profile with aximum processing: up to 3,888,000 Macroblocks per second (corresponding to 3840x2160 @ 120fps), low-latency encoding, error-robustness, slicing, intra refresh, long term prediction.
· Maximum number of combined encoding and decoding instances: 16
· Audio capabilities that allow to encode several PCM signals with low-latency and to decode multiple audio PCM signals in parallel.
· The scene manager is very lightweight and passes through primitive buffers to be consumed by swap chains of the XR run-time. Swapchain images are typically 2D RGB.
Editor’s Note: More detailed assumptions on the rendering capabilities needs to be documented
image1.jpeg

image2.jpeg

image3.emf
AR Glass device

Sensors Cameras

Eye Buffer

Display

Speakers

AR/MR Application

User Input

Wireless Connection

Media Access

Functions

XR Runtime

Micro-

phones

MAF-

API

XR Scene

Manager

XR

Scene

API

Primitives Buffers

Scene Description

Raw Media and Sensor Data

Downlink Media

XR

Runtime

API

Microsoft_Visio_Drawing.vsdx
AR Glass device
Sensors
Cameras
Eye Buffer Display
Speakers
AR/MR Application
User Input
Wireless Connection
Media Access Functions
XR Runtime
Micro- phones
MAF-API
XR Scene Manager
XR Scene API
Primitives Buffers

Scene Description
Raw Media and Sensor Data

Uplink Media

Downlink Media

XR RuntimeAPI

