3GPP TSG SA WG4 #127-e

 SA4a-240029573
e-meeting, 298-12 April-13 May 2024

Source:	Bytedance
Title:	[IVAS] External Bytedance Render integrated with IVAS Codec experiments
Agenda item:	17.56
Document for:	Discussion and Agreement

1. Introduction
This document provides a technical description and report of the integration of external Bytedance renderer with the IVAS codec. This is to answer some questions raised regarding to proposal S4-240060 discussed on 127th SA4 Sophia-Antipolis meeting. The external Bytedance renderers can be used to extend the capabilities of IVAS by adding support for new rendering algorithms and tools, especially on acoustics simulation and environment guided reverberation.
In this pilot trial, we firstly analyze IVAS encoding-decoding-rendering process to verify the object, HOA rendering and environmental sound rendering effects, which will be a baseline. Then, we integrate Bytedance Render to replace IVAS rendering module, and also make some functional comparison between Bytedance render with IVAS built-in render(Internal and external way to use) to demonstrate how to add new rendering capabilities to IVAS.
2. Experiment Process
 2.1 Pre-conditions
· IVAS source code:https://forge.3gpp.org/rep/ivas-codec-pc/ivas-codec main branch commit sha: 0d8347369fb409ab833419712624498d0d4ba5e7
· External Bytedance renderer source code
· C++ compiler(Apple clang version 14.0.0 (clang-1400.0.29.202))
 2.2 Experiments Conducted
 2.2.1 IVAS Baseline setup
2.2.1.1 Encoding for Object and Ambisonic input
Encoding Object with metadata
Using IVAS's built-in test materials, code two Objects. The coding implementation is as follows:
./IVAS_cod -ism 2 stvISM2.csv stvISM2.csv 32000 48 stv2ISM48s.wav output.ivas
Object metadata is as follows, where radius and orientation are extended metadata, only available when the bit rate is greater than 64kbps. the object source file"stv2ISM48s.s"
typedef struct _IVAS_ISM_METADATA
{
 float azimuth;
 float elevation;
 float radius;
 float spread;
 float gainFactor;
 float yaw;
 float pitch;
 int16_t non_diegetic_flag;
} IVAS_ISM_METADATA;
Metadata file stvISM2.csv, object trajectory visualization as follows：

Encoding 3-order HOA
HOA source file is "stv3OA48c.wav".Using IVAS's built-in test materials, encode a 3rd-order HOA. The encoding implementation is as follows:
./IVAS_cod -sba +3 256000 48 stv3OA48c.wav hoa.ivas
2.2.1.2 Decoding and rendering
IVAS renderer is divided into built-in renderer and external renderer, which are separate modules. The built-in renderer and decoder are integrated, while the external renderer is separated. The core algorithms of the two are the same. Here, the built-in renderer is used to decode the verification stream and control the rendering process using metadata.
 There are three kinds of IVAS binaural rendering, namely Binaural, Binaural_Room_IR, Binaural_Room_reverb, the differences are as follows:
· Binaural mode uses defaultHRIR (ivas_rom_rend) to render binaural audio, with customizable HRTF;
· Binaural_ Room_IR Rendering Binaural Audio with CRendBin_Combined_BRIR_diffuse (ivas_rom_binaural_crend.h)
· Bianural_Room_reverb render the audio using the same HRTF as Binaural mode, and then generate artificial reverb based on the Acoustic parameters to output the final binaural audio.
Object decoding and rendering
· Binaural mode rendering
 ./IVAS_dec BINAURAL 48 input.ivas output.wav
The rendered audio is named "binaural.wav"
· Binaural_room_IR mode rendering
./IVAS_dec BINAURAL_ROOM_IR 48 input.ivas output.wav
The rendered audio is named "binaural_room_ir.wav"
· Binaural_room_reverb rendering
./IVAS_dec -aeid 0 -render_config rend_config_recreation.cfg BINAURAL_ROOM_REVERB 48 input.ivas output.wav
The environmental sound configuration file is as follows:
[roomAcoustics]
frequencyGridCount = 1;
acousticEnvironmentCount = 1;

[frequencyGrid:0]
method = individualFrequencies;
nrBands = 31;
frequencies = [20.0, 25.0, 31.5, 40.0,
 50.0, 63.0, 80.0, 100.0,
 125.0, 160.0, 200.0, 250.0,
 315.0, 400.0, 500.0, 630.0,
 800.0, 1000.0, 1250.0, 1600.0,
 2000.0, 2500.0, 3150.0, 4000.0,
 5000.0, 6300.0, 8000.0, 10000.0,
 12500.0, 16000.0, 20000.0];

[acousticEnvironment:0]
frequencyGridIndex = 0;
acousticPreDelay = 0.032;
predelay = 0.430312;
rt60 = [4.519163, 4.895527, 4.832761, 5.001975,
 5.344683, 5.760259, 6.36818, 6.955033,
 7.275571, 7.625591, 8.088915, 8.160022,
 8.138999, 8.179192, 8.162802, 8.462264,
 9.618056, 9.930476, 9.813532, 8.593404,
 8.388852, 8.368234, 6.518449, 3.760885,
 3.753736, 3.574508, 1.287239, 1.221739,
 1.22448, 1.716312, 2.143427];

dsr = [9.18578e-07, 7.63803e-07, 9.23183e-07, 1.048656e-06,
 1.61449e-06, 2.13745e-06, 2.854805e-06, 3.979651e-06,
 6.229977e-06, 7.782421e-06, 9.091754e-06, 8.545798e-06,
 7.482083e-06, 7.351071e-06, 7.947039e-06, 8.152676e-06,
 5.201189e-06, 4.744103e-06, 4.397069e-06, 3.017449e-06,
 2.958383e-06, 2.725911e-06, 7.94912e-07, 6.20198e-07,
 5.71181e-07, 5.5546e-08, 1.3987e-08, 1.338e-08,
 1.322e-09, 1.3e-11, 4e-12];

#[general]
#binaryConfig = rend_config_recreation.dat;

The rendered audio is named "binaural_room_reverb.wav"
external render mode(binaural_room_Reverb)
For easy debugging, use an independent renderer to render the decoded wav file and reproduce the
binaural rendering effect with ambient sound.
Decode the wav file and metadata file using the decoder (specify that the pre-encoded product can be unencoded using an external renderer).
./IVAS_dec EXT 48 output.ivas decoding.wav

The comparison of wav before and after decoding is as follows (stv2ISM48s.wav and decoding.wav, comparing the spectrum of the first Object, Codec loss is higher below 100Hz:

Rendering method is as follows:
./IVAS_rend -i decoding.wav
 -if ism2
 -im decoding.wav.0.csv decoding.wav.1.csv
 -o alone_rendering_binaural_room_reverb.wav
 -of BINAURAL_ROOM_REVERB -fs 48
 -aeid 0
 -render_config rend_config_recreation.cfg
The rendering effect is exactly the same as using decoder-inner_rendering effect:

3-order HOA decoding and rendering
· Binaural mode rendering
./IVAS_dec BINAURAL 48 input.ivas output.wav
The rendered audio is named "hoa_binaural.wav"
· Binaural_Room_IR mode rendering
 ./IVAS_dec BINAURAL_ROOM_IR 48 input.ivas output.wav
The rendered audio is named"hoa_binaural_IR.wav"
· Binaural_Room_Reverb mode rendering
./IVAS_dec -aeid 0 -render_config rend_config_recreation.cfg BINAURAL_ROOM_REVERB 48 input.ivas output.wav
The environmental sound configuration file is same as above.
The rendered audio is named "hoa_binaural_reverb.wav".
External render mode(binaural_room_Reverb)
For easy debugging, use an independent renderer to render the decoded wav file and reproduce the binaural rendering effect with ambient sound.
Using ./IVAS_dec 48 output.ivas decoding.wav , according to the README should solve the 3rd
order HOA, but the decoder will decode according to MONO, decoding error.
Using ./IVAS_dec EXT 48 output.ivas decoding.wav , the decoded audio is 4 channels
After analysis, the number of transport channels is determined to be 4 by looking up the table through order and bit rate during decoding. It is speculated that this is because the bit rate is low, and the encoding is downmixed into 4-channel encoding. If an external renderer is specified, no upmixing will be performed after decoding, so the number of channels after decoding is 4, that is, FOA.
Using ./IVAS_dec HOA3 48 output.ivas decoding.wav, 3OA can be decoded as "hoa_decoding_hoa3.wav"
Compared with HOA audio before and after decoding (stv3OA48c.wav and hoa_decoding_hoa3.wav first channel), there is a significant loss of low frequency below 100Hz:

The render 3OA command is as follows:
./IVAS_rend -i decoding.wav
 -if HOA3
 -o hoa_external_binaural.wav
 -of BINAURAL_ROOM_REVERB -fs 48
 -aeid 0
 -render_config rend_config_recreation.cfg
 The rendering result is named "hoa_external_binaural.wav"
Compared with the rendering results using the built-in renderer (hoa_binaural_reverb.wav), the HOA loudness rendered by the external renderer is significantly increased, and the subjective listening effect is significantly different:

The rendering FOA command is as follows:
./IVAS_rend -i decoding.wav
 -if FOA
 -o alone_rendering_binaural_room_reverb.wav
 -of BINAURAL_ROOM_REVERB -fs 48
 -aeid 0
 -render_config rend_config_recreation.cfg
The rendering result is as named as "alone_rend_for_FOA_REVERB.wav"
The external renderer renders FOA and HOA result pairs almost identical:

2.2.2 Integrating IVAS with Bytedance render
The Bytedance Render API is encapsulated to be compatible with the IVAS renderer framework. This test only realizes the rendering of Object and Ambisonic by Bytedance Render , and the other formats are not supported yet , among which the spread, yaw, and pitch of the object are not supported yet.
Several differences are as follows：
· IVAS uses the c99 standard, and there are some compatibility issues when using Bytedance Render , such as structures cannot be assigned initial values, functions do not have default values, but Bytedance Render uses these default values when rendering, and deleting these default values will cause potential errors
· IVAS headRotation uses quaternion representation, Bytedance Render uses orthogonal vector representation
· IVAS rendering using unnormalized float data (×/÷ 32768)
· The IVAS data exchange format uses a one-dimensional array to continuously store the planar format, and needs to be converted before and after rendering
2.2.2.1 Free Field Mode Rendering
Verify Free filed mode is working properly both for Object and HOA input, in similar way described in section 2.2.1.
2.2.2.2 Low Complexity mode Rending
Verify that the shoebox model is working properly for Object input. But for HOA input, in order use Bytedance Render environment sound rendering in IVAS framework, some function modication is needed to map the environment sound configuration of Bytedance Render to the IVAS configuration file. Rendering is reverse mapping, and Bytedance Render uses the correct environment sound parameters. The implementation is as follows.
IVAS environmental acoustic parameters：
int16_t override;
int16_t nBands;
float pFc_input[60];
float pAcoustic_rt60[60];
float pAcoustic_dsr[60];
float acousticPreDelay;
float inputPreDelay;

/* early reflections */
int16_t use_er;
int32_t lowComplexity;
IVAS_VECTOR3 dimensions;
float AbsCoeff[6];
IVAS_VECTOR3 ListenerOrigin;
Bytedance Render 's ambient sound parameter structure is as follows:
bool enabled = true;
int material_type；
float absorption[4]；
float scattering；
float transmission；
float to_world_transform[16]；
float vertices[n],
int indices[m]

Establish the following mapping relationship betweeen IVAS acoustic configurations with Byteddance acoustic parameters:

From the mapping relationship in the above figure, the environmental sound parameters of IVAS can meet the environmental sound rendering of Bytedance Render in terms of ability, and there is even an potential to extend IVAS parameter for more functions. Section 2.3 will give further comparison.

2.2. Some Rendering capabilities comparison
IVAS environmental sound is divided into earlyReflection and lateReflection. Early reflection uses the shoebox model, while late reflection uses artificial reverberation.
· Functionally, the physical analog reverb of Bytedance Render can match the environmental sound rendering module of IVAS.
· From the perspective of interface and parameter form, Bytedance Render needs to upgrade the interface and function to fully cover the IVAS environmental sound specification, as follows:
· Bytedance Render already supported: dimensions, AbsCoeff, ListenerOrigin
· Need to modify Bytedance Render API to support: Acoustic_rt60, use_er. This is because Bytedance render used the built-in fixed number of bands.
· Need to change the Bytedance Render engine code to support: nBands, Fc_input, acousticPreDelay, lowComplexity. This is also because Bytedance render used the built-in fixed number of bands
· Bytedance Render needs to support ambient sound rendering for Ambisonic format input

	
	IVAS parameters

	Meaning
	Bytedance Render Feature Analogy

	Late Reflection
	nBands
	Number of reverberation bands, < = 60
	Yes

	
	pFc_input
	Center frequency of each band
	Yes

	
	pAcoustic_rt60
	RT60 in each band
	Yes

	
	pAcoustic_dsr
	Scattering coefficient of each band
	Yes

	
	acousticPreDelay
	Delay between input signal and late reverberation
	Yes

	
	inputPreDelay
	Calculate the position offset of DSR from RIR (in seconds).
	Yes

	Early Reflection
（shoebox or LC）
	use_er
	Whether to enable early reflection
	Yes

	
	lowComplexity
	Whether early reflection uses lc mode
	Yes

	
	dimensions
	Room size, length, width, height
	Yes

	
	AbsCoeff
	Absorption rate, 6
	Yes

	
	ListenerOrigin
	The user's location in the shoebox
	Yes

Results and Discussion
After this trial experiment, we prove that Bytedance render could integrate into IVAS codec with some adaptation work. During the process of experiment, the following aspects of IVAS are found and worth discussing:
(1) For the Object type, if there are multiple oObjects, multiple renderers and multiple Reverb instances need to be created IVAS Renderer will create reverb instances as many as objects num when rendering objects to binaural.
The API ivas_reverb_open is used in IVAS_REND_AddInput when output format is BINAURAL_ROOM_REVERB，it means each object audio binds a corresponding reverb instance, maybe because each object position is different in the current scene and each object has a unique reverb intensity. However, these several reverb effects will be superimposed on the binaural audio finally. In other words, binaural audio is equivalent to direct audio mixing reverb audio. So is it possible to use a global reverb instead of the superposition of several sum reverbs? Reverb is an environment-related attribute rather than object-related. And I believe it can reduce computational load.
Additionally, our bytedance renderer implements a global environment acoustic using ray-tracing. Are you experts interested in having a try on 6DoF rendering or ISAR second phase?
(2) The default decoding order of HOA depends on the bit rate rather than the original HOA order.
Why not restore the audio together with HOA order as the default option compared to before encoding?
(3) When IVAS decodes HOA, the number of decoded channels is determined based on bit rate and order, rather than restoring the audio before encoding
IVAS external renderer and IVAS inner renderer have different effects when rendering HOA audio.
In the earlier version, we compared the rendering of HOA of inner renderer and external renderer using exactly the same parameters and sources, but the external binaural result is 3dB louder than the internal one. Why not align the effect? If it is to optimize the loudness, why not do it both?
In the recent version, we checked this question again. The 3dB loudness diff still exists, and the envelope trends of spectrum are different from to previous tests between the external rendering results and the inner rendering results. I'm not sure if it is a bug or update. It refers to 2.2.1.2.
(4) When using an external renderer to render HOA, the loudness is + 3dB higher than when using decoder-inner_renderer, and the rendering effect is significantly different
The external renderer data exchange format uses used an unnormalized float type.
, This type datawhich is not compatible with general audio processing algorithms, especially in audio processing algorithms. Is this reserved for future fixed-point optimization?
(5)About late reflection frequency bands num
The max late reflection bands number is as high as 60 in IVAS source code, and is as high as 41 in 26253-100 doc. Is such a high accuracy proportional to the benefits it brings? and are there any performance issues on mobile or embedded devices? Even though users can choose not to use so many, is it necessary to set so large range for late reverb?

Conclusion
In this experiment, we have integrated external Bytedance renderer into IVAS to demonstrate how to add new rendering capabilities to IVAS. This pave the way for further experiments to add new external rendering tools and upgrade the IVAS functionalities.

References
· [1] 3GPP TS 26.253 Codec for Immersive Voice and Audio Services - Detailed Algorithmic Description incl. RTP payload format and SDP parameter definitions
· [2] 3GPP TS 26.254 Codec for Immersive Voice and Audio Services; Rendering
· [3] S4-240060 [ISAR] More scenarios and requirements for immersive audio split rendering

image2.png

image3.png
Hz 100 1k 10k

image4.png

image5.png
] T
Hz 30 40 5060 80100 200

T T
300 400

TRETRRTTR
600 800 1k

T
P13

T T T L B |
3k 4k Ske6k 8k 10k

T
20k

image6.png

image7.png
Bytedance_Rend

enabled ‘%
absorption[4] ‘%
scattering ‘%
to_world_transform[16] ‘%
indices[m] ‘%

IVAS_Rend

lowComplexity

dimensions [0]

AbsCoeff [0-4]

AbsCoeff [4]

AbsCoeff [5])

Fc_input[60]

Acoustic_rt60[60]

Acoustic_dsr[60]

dimensions [1]

dimensions [2]

use_er
nBands
inputPreDelay
acousticPreDelay
ListenerOrigin

image1.png
Zzaxis

