SA WG3 LI Temporary Document

Page 1

3GPP SA3#88-LI-e-a

 s3i230035
23-27 January 2023

Source:

Title:
LI_X1 Management
Document for:
Discussion
Agenda Item:

Work Item / Release:
Rel-18
Abstract of the contribution: This paper seeks discussion on the correct requirements for the LI_X1 management interface.
1
Introduction
SA3LI#87-b agreed a number of conclusions with respect to LI_X1 Management, including the following (from the internal discussion document circulated during the meeting).
Item 2 - Additions to LI_X1 for Triggering Functions

Goal - Provide a means for the LIPF to obtain the "delegated" tasking state from a Triggering Function

Potential solutions – Use of TS 103 221-1's new "Generic Object" to represent delegated state, or addition of reporting messages each time a triggered Task is added (though this could have bandwidth / load implications). Assume a CR in SA3-LI for now, with the option to "promote" it to ETSI TCLI if the capability is sufficiently generic / non-3GPP-specific.

May need to establish a new abstraction (e.g. hierarchical tasking) in order to discuss. If extensions to the X1 protocol are required, we should try to do it in a way that the enhancements can be used outside of TS 33.128.

This contribution explains how this goal may be achieved using TS 103 221-1's Generic Object mechanism.

2
Problem Statement

A Triggering Function (TF) receives tasking information from the LIPF via LI_X1. When it sees a network procedure which meets the appropriate trigger conditions for this tasking information, it issues a tasking instruction to the relevant triggered POI via LI_T2 or LI_T3. Both exchanges use ETSI TS 103 221-1.

This means that the Triggering Function contains two sets of "X1 state"; one set of state received from the LIPF via LI_X1, and another set of state which it controls in the POI via LI_T2/3.

[image: image1.emf]LIPF TF POI LI_X1 LI_Tx

Task A Task A Task X

Task Y

Task X

Task Y

´Delegatedµ�state

The LIPF is free to query the first set via LI_X1, but currently has no means of directly interrogating the second set of "delegated" state. SA3LI#87-b agreed that this was a necessary capability and should be added.
3
Solution Outline
We define a new type of Generic Object to represent a "Delegated" object. This contains a copy of the delegated state (Task and Destination objects).
Each Task and Destination that the TF creates in the POI is then represented over LI_X1 as a Delegated Object (e.g. a Delegated Task or Delegated Destination). The TF is free to assign whatever Object ID it likes.

[image: image2.emf]TF POI LI_Tx

Task A

Task X

Task Y

Task X

Task Y Delegated Task X

Delegated Task Y

At a schema level, the definitions of the Task and Destinations can be re-used. This helps from an implementation perspective because it means little or no mapping is required between the TF's internal delegated state and the representation of it over LI_X1. From a specification maintenance perspective, it also means that any changes in the specification to Tasks or Destinations will be automatically reflected in Delegated objects.

These Delegated Objects will be returned as part of a GetAllDetails command, or the LIPF can discover them via the ListObjectsOfType query. Because the Delegated Task object will contain exactly the same information as a regular Task object, this means the Delegated Task will contain the ProductID field. This provides the LIPF with the mapping between the Tasks that it created in the TF, and those which the TF has created in the POI.

[image: image3.emf]Task A

Delegated Task X

ProductID = A

Delegated Task Y

ProductID = A

GetAllDetails Response

LIPF TF

LI_X1 LI_X1

This mechanism doesn't provide an efficient way for the LIPF to query for Delegated Tasks related only to a single TF Task from the LIPF. However, since this capability is required mainly for audit, retrieving all delegated state seems a more likely access pattern than requiring only delegated state related to a specific TF Task.
If this latter access pattern is required, then we can extend the LIPF's Task state with a read-only field that gives the ObjectIDs of the relevant delegated Tasks (e.g. by adding it to the TaskStatus structure).
4
Other issues
Clause in TS 103 221-1 that says Generic Objects may only be defined in that spec. We can define the Delegated State objects in TS 103 221-1, but SA3LI loses the ability to maintain them directly (it will need to be done via LS / cooperation with TCLI). Since LI_T2/T3 are 3GPP-specific, it's also not obvious that they should be defined in TCLI. TS 33.128 gives itself the freedom to override any such restriction in clause 5.2.1, so we propose defining the extensions in TS 33.128 and taking a proposal to ETSI TCLI to qualify the restriction in TS 103 221-1 to signal that other SDOs may define Generic Objects.
X1 provides means for managing (i.e. updating, creating and deleting) Generic Objects. However, delegated state objects are created, updated and maintained by the TF in response to network procedures that the LIPF does not have visibility of. It is not clear how a TF should respond if e.g. an LIPF asks it to create, update or delete a delegated Task. The protocol gives us freedom to choose, so we need to choose what behaviour we want.
5
Worked Example
The discussion doc is accompanied by an example XML file. The XML file shows what a "GetAllDetailsResponse" would look like for the following situation:
· The LIPF has issued an ActivateTask for SUPI 999991234 of with an XID ending 0697.

· The TF has seen a session trigger for that SUPI at a UPF and sent an ActivateTask to the CC-POI to start interception on the relevant SEID. That task has an XID ending in dc7e, and a product ID set to the original XID ending in 0697.
· The LIPF issues a "GetAllDetails" request to the TF.

The XML file shows both the original Task and the DelegatedTask being returned. The original Task part looks identical to today, with the only change to the message being the addition of the Generic Object response details which includes the delegated Tasks.
The example XML omits a number of elements, such as details of the Destinations, in the interests of brevity. The following pages show the XML with some highlighting to pick out the different areas (blue for header, green for information about the TF's Task, yellow for information about the CC-POI's delegated Task).

<X1Response xmlns="http://uri.etsi.org/03221/X1/2017/10" xmlns:common="http://uri.etsi.org/03280/common/2017/07" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ts33128="urn:3GPP:ns:li:3GPPX1Extensions:r18:v2">
 <x1ResponseMessage xsi:type="GetAllDetailsResponse">
 <admfIdentifier>LIPF</admfIdentifier>
 <neIdentifier>CCTF</neIdentifier>
 <messageTimestamp>2023-01-14T10:05:00.000000Z</messageTimestamp>
 <version>v1.13.1</version>
 <x1TransactionId>6cb8a4a5-556c-4913-9148-48b2a30a1a9c</x1TransactionId>
 <neStatusDetails>
 <neStatus>OK</neStatus>
 <listOfFaults/>
 </neStatusDetails>
 <listOfTaskResponseDetails>
 <taskResponseDetails>
 <taskDetails>
 <xId>6817fa9b-9cb7-4f88-91db-6ad6ca890697</xId>
 <targetIdentifiers>
 <targetIdentifier>
 <supiimsi>999991234</supiimsi>
 </targetIdentifier>
 </targetIdentifiers>
 <deliveryType>X2andX3</deliveryType>
 <listOfDIDs>
 <dId>0c53a89e-ade8-4e8e-8e63-ec62a8ecf192</dId>
 </listOfDIDs>
 </taskDetails>
 <taskStatus>
 <provisioningStatus>complete</provisioningStatus>
 <listOfFaults/>
 </taskStatus>
 </taskResponseDetails>
 </listOfTaskResponseDetails>
 <listOfDestinationResponseDetails></listOfDestinationResponseDetails>
 <listOfGenericObjectResponseDetails>
 <genericObjectResponseDetails>
 <object xsi:type="ts33128:DelegatedTask">
 <objectId>fa984977-843f-4da5-a08a-8d4cae41cf0b</objectId>
 <ts33128:NEID>CCPOI-A</ts33128:NEID>
 <ts33128:TaskDetails>
 <xId>3741800e-971b-4aa9-85f4-466d2b1adc7e</xId>
 <targetIdentifiers>
 <targetIdentifier>
 <targetIdentifierExtension>
 <Owner>3GPP</Owner>
 <ts33128:UPFLIT3TargetIdentifierExtensions>
 <ts33128:UPFLIT3TargetIdentifier>
 <ts33128:FSEID>
 <ts33128:SEID>1</ts33128:SEID>
 <ts33128:IPv4Address>192.0.2.1</ts33128:IPv4Address>
 </ts33128:FSEID>
 </ts33128:UPFLIT3TargetIdentifier>
 </ts33128:UPFLIT3TargetIdentifierExtensions>
 </targetIdentifierExtension>
 </targetIdentifier>
 </targetIdentifiers>
 <deliveryType>X2andX3</deliveryType>
 <listOfDIDs>
 <dId>0c53a89e-ade8-4e8e-8e63-ec62a8ecf192</dId>
 </listOfDIDs>
 <productID>6817fa9b-9cb7-4f88-91db-6ad6ca890697</productID>
 </ts33128:TaskDetails>
 <ts33128:TaskStatus>
 <provisioningStatus>complete</provisioningStatus>
 <listOfFaults></listOfFaults>
 </ts33128:TaskStatus>
 <ts33128:LastTaskStatusTime>2023-01-14T09:00:00.000000Z</ts33128:LastTaskStatusTime>
 </object>
 </genericObjectResponseDetails>
 </listOfGenericObjectResponseDetails>
 </x1ResponseMessage>
</X1Response>
3GPP

SA WG3 TD

TF
POI
LI_Tx
Task A
Task X
Task Y
Task X
Task Y
Delegated Task X
Delegated Task Y

Task A
Delegated Task X
ProductID = A
Delegated Task Y
ProductID = A
GetAllDetails Response
LIPF
TF
LI_X1
LI_X1

LIPF
TF
POI
LI_X1
LI_Tx
Task A
Task A
Task X
Task Y
Task X
Task Y
“Delegated” state

