

	
1 - Introduction
1.1 - Overview
This document gives the SA3LI working procedures for using the Forge in conjunction with the 3GPP CR process.
1.2 - Aims
SA3LI uses the Forge to meet several key objectives agreed by group
1. Raise the quality of accepted CRs by providing a consistent mechanism for validating and syntax checking formal-language components of CRs before they are accepted
2. Avoid implementation errors during the publication process by providing an automated means of merging formal-language changes
3. Provide a developer-friendly way of obtaining SA3LI's formal language deliverables
1.3 - Approach
CR authors are asked to submit their changes as Merge Requests to the Forge (in addition to the regular 3GPP process), as part of the normal meeting process. This allows the aims to be met in the following ways
· Merge Requests can be subject to automated testing, including syntax-checking and compilation, ensuring that CRs can be proven to compile before being accepted by the meeting
· Merge Requests can be automatically checked against each-other to highlight potential conflicts, allowing these to be resolved before the close of the meeting
· The Forge provides a set of comprehensive, industry-standard tools for analysing the changes proposed, making comprehensive review by technical delegates much easier.
· Merge Requests provide a way for CRs to be implemented automatically within the formal-language parts of the spec, reducing the scope for error (while still allowing the output to be subject to the normal 3GPP review and publication process).
· Developers can easily clone, copy and compare formal-language artefacts stored on the Forge using the same industry-standard tooling that many use in regular development (git).

2 - Repositories
2.1 - Repository structure
SA3-LI uses a single repository for its formal-language deliverables. There are two instances of the repository;
· A production repository at https://forge.3gpp.org/rep/sa3/li

This repository shall be used from 1st Jan 2022 for all meeting CR(s).

· A trial repository at https://forge.3gpp.org/rep/sa3/li-trial
This repository was used prior to 1st Jan 2022 for trial development of SA3-LI forge procedures. It may be used for ASN.1 / XML experiments or process improvement. However, any ASN.1 / XML submitting to this repository from 1st Jan 2022 cannot be used in support of CR(s) submitted for formal approval to SA3-LI.

2.2 - Directory structure
The repository has the following directory structure:
· A subdirectory for each specification with formal-language schemas
· A subdirectory for each published release.
· An ASN.1 or XSD file for each formal-language module or schema in that release of that schema
· A "testing" subdirectory for shared test fixtures used for automated checking.
In this way, the repository structure reflects the state of the most-recently published specifications for each given release.
	EXAMPLE
	The following diagram illustrates the directory structure. For brevity, only one directory has been fully expanded.
	 (Repository root)
		├─ 33128
		│		├─ r17
		│		│ ├─ TS33128Payloads.asn
		│		│ ├─ TS33128IdentityAssociation.asn
		│		│ ├─ TS33128IdentityAssociation.asn
		│		│ ├─ urn_3GPP_ns_li_3GPPIdentityExtension.xsd
		│		│ ├─ urn_3GPP_ns_li_3GPPStateTransfer.xsd
		│		│ └─ urn_3GPP_ns_li_3GPPX1Extensions.xsd
		│		├─ r16
		│		└─ r15
		├─ 33108
		└─ testing

2.3 - Branch configuration
The current state of published 3GPP SA3LI deliverables, across all releases, is represented by the "main" branch.
Other branches are created and merged during the CR process (see clause 3).
2.4 - Repository roles
The Forge CR process involves the following roles:
· Maintainer – Responsible for creating, managing and removing meeting branches, accepting CRs in the Forge once agreed by the meeting, and resolving post-meeting issues
(3GPP Technical Officer, ETSI Forge staff, or delegated authority, as directed by SA3LI chair)
· CR Author – Responsible for creating, submitting and updated CRs to the Forge.
(any delegate permitted to contribute CRs to the meetings)
2.5 - Repository configuration
Annex A contains more detailed information on how the repositories are configured, including user permissions and default branch behaviours.
3 - CR process
3.1 - Preparing for a meeting
The Maintainer creates a meeting branch that represents the baseline for a plenary meeting at which a given set CRs will be agreed. If there is more than one SA3LI meeting in a given plenary cycle, then the same meeting branch will be used.
The branch name follows the branching convention given in clause 4.2:
meeting/[meeting title]/
	EXAMPLE
	CRs considered at SA3#82-LI-e-a (2021-07-12) will be considered at the next plenary meeting, which is SA3#93e (2021-09-14).
Before SA3#82-LI-e-a the Maintainer therefore creates a branch called meeting/SA93e
CRs considered at SA3#82-LI-e-b (2021-09-01) will also be considered at SA3#93e. The Maintainer does not need to create an additional meeting branch.

3.2 - Drafting a CR
The CR Author reserves a CR on the 3GPP portal, following the existing 3GPP process. This assigns a CR number to the CR.
The CR Author creates a branch specific to their CR, following the branching convention given in clause 4.2.
cr/[deliverable]/[CR number]
This branch is created using the appropriate meeting branch (rather than main) as a baseline.
The CR Author immediately creates a Merge Request (MR) for the new branch, targeting the same meeting branch. The CR Author gives the MR a title following the naming convention in clause 4.1.
[deliverable] CR [CR number] – [CR title]
The CR Author (and any collaborating parties) commits the desired changes to their branch
Changes made to the CR branch are visible to anyone with access to the ETSI Forge. Delegates may comment on and, if appropriate, contribute to, the changes in the CR branch.
	EXAMPLE
	A CR Author wishes to contribute a CR to TS 33.128 for SA3#82-LI-e-a. They reserve a document on the portal, and are assigned CR number 987. The CR will be considered at the next plenary meeting, SA3#93e.
Given this information, the CR Author creates the following:
A new CR branch
Name: cr/33128/0987
Baseline: meeting/SA93e
A new MR,
Source branch: cr/33128/0987
Target branch: meeting/SA93e
Titled "TS 33.128 CR0987 – My proposed change"

3.3 – Submitting a CR to a meeting
The CR Author should ensure that the current commit passes any automated syntax and drafting rule checks before submitting the CR for consideration by the meeting. CRs which do not pass automated checking may be accepted at the discretion of the Chair (see clause 3.4).
When ready for submission, the CR contributor prepares a CR form as per the existing 3GPP CR process. The CR author places a link to both the MR and the latest commit in their CR branch in the "Other comments" section of the CR form. For consistency, the CR contributor should adopt the following convention for entering these details into the "Other comments" box:
	

	Other comments:
	This CR is associated with the following changes in the Forge:
Merge request: {link to Merge Request, with the merge request number as the display text}
Commit hash: {link to latest commit in the CR branch, with the hash as the display text}

An example is given below
	Other comments:
	This CR is associated with the following changes in the Forge:
Merge request: !93
Commit hash: 39a6e57a85703b6922d9b13f416991fd1f500acd

The CR author includes the changes to the formal language schema as part of the CR form, using change-marked text as per the existing 3GPP process. CR authors are strongly encouraged to generate this change-marked text from Forge tooling, rather than attempting to keep the CR Form and Forge MR aligned manually.
Changes are included in a change block which clearly indicates that attachments that is being changed, and which contains a standard diff format description of the changes to the attachments. To populate this, the CR author downloads the "plain diff" changes from the Merge Request overview page. The diff sections for each attachment are given in a separate change block in the CR, with each change block clearly indicating to which attachment it applies. An example is given below:

	 FIRST CHANGE (ATTACHMENTS) 	

diff --git a/33128/r16/TS33128Payloads.asn b/33128/r16/TS33128Payloads.asn
index 6576c098961d79b55661c2e2f7236a7aea5b0869..05bdfbd269949531a2a9f7fe0024b7089a76c6a9 100644
--- a/33128/r16/TS33128Payloads.asn
+++ b/33128/r16/TS33128Payloads.asn
@@ -254,7 +254,15 @@ CCPDU ::= CHOICE
 uPFCCPDU [1] UPFCCPDU,
 extendedUPFCCPDU [2] ExtendedUPFCCPDU,
 mMSCCPDU [3] MMSCCPDU,
+
+ -- In Rel-17 and newer (threeGPP(4) ts33128(19) r17(17) version1(1)),
+ -- tag 4 is nIDDCCPDU and tag 5 is pTCCCPDU.
+ -- Rel-16 decoders should not decode tag 4 contents as PTCCCPDU if
+ -- r17 or newer is used in cCPayloadOID.
 pTCCCPDU [4] PTCCCPDU
+
+ -- Tag 5 is reserved for pTCCCPDU in Rel-17 and newer.
+
 }

 -- ===========================
	 END OF CHANGES 	

3.4 – Consideration of the CR at the meeting
The CR Author presents both the CR form and the associated changes in the 3GPP Forge to the meeting.
If the CR Author decides to revise the contribution, they makes any necessary changes by making additional commits to the CR branch. Draft CR forms may be created following the procedures in clause 3.3, and the uploaded to the drafts folder following the existing 3GPP process. It is the CR Author's responsibility to ensure that the CR form correctly reflects the current state of changes in the Forge, including updated the commit hash and any change to the content of change blocks related to attachments.

CRs should pass automated checking before being accepted by the meeting, with exceptions being made at the Chair's discretion. Special attention should be given to CRs which fail the automated merge test check. This indicates that two or more CRs conflict with each other. In some cases this is unavoidable (e.g. if two CRs both add parameters to the same structure), but CR Authors should ensure that any unavoidable merge conflicts are resolved prior to agreement.
3.5 – Post-meeting treatment of agreed CRs
Once the final SA3LI meeting in a given plenary cycle is finished, the Maintainer accepts the MR for each agreed CR, with the following settings:
· Source branch is not deleted.
· Source commits are squashed.
The Maintainer then resolves any merge conflicts, seeking assistance from CR authors where necessary.
The Maintainer then performs the following post-meeting steps:
· Object Identifiers for any ASN.1 modules that contain changes are incremented
· XSD version tags in XSD namespaces of any XSD schemas that contain changes are incremented
· ASN.1 Structures with new or changes tags are checked to ensure tag numbers are sequential (unless otherwise agreed).
· Tabs are replaced with spaces
· Indentation and alignment errors are corrected
The meeting branch now contains a corrected set of CRs that can be submitted to SA plenary, and be used to generate a draft version of the specification.
3.6 – Post-plenary procedures
Once the changes are confirmed by SA and the new version of the spec is published, the Maintainer merges the agreed meeting branch into the relevant release branch with the following settings:
· Source branch is deleted.
· Source commits are not squashed.
NOTE – this is the opposite to the settings used in accepting the CRs.
The Maintainer tags the head of the main branch following the tagging convention given in clause 4.
· A tag for each deliverable agreed for publication at the plenary meeting
· A tag indicating the output of the plenary meeting
These tags make it easy to retrieve or compare specific versions of a specification, or the output of specific meetings.
The Maintainer removes the meeting branch and any remaining CR branches.
	EXAMPLE
	After SA3#93e, new versions of TS 33.128 are agreed for publication. A Release 16 version is agreed at 16.7.0, and a Release 17 version is agreed at 17.2.0.
After merging the meeting branch back into main, the Maintainer creates the following tags for the head commit
A tag for the meeting output named output/SA93e
A tag for the newly-published TS 33.128 r17 spec, named spec/33128/17.2.0
A tag for the meeting output named spec/33128/16.7.0

4 – Conventions
4.1 – Rendering convention
	Element
	Description
	Example

	meeting title
	Name of a meeting, given with only alphanumeric characters (i.e. all hyphens and hashes removed)
	SA93e
SA382LIea

	deliverable
	Name of a published deliverable, containing only the numeric characters (i.e. 'TS', spaces and periods omitted)
	33128
33108

	CR number
	A CR number, given as a four digit number padded with zeroes
	0987

	version
	A version of a given deliverable, including release number, given as dotted decimals
	17.1.0

4.2 – Branching convention
	Branch Name
	Description
	Example

	main
	Current published deliverables
	main

	meeting/{meeting title}
	Branch used as a baseline for CRs being considered at a given SA plenary meeting, and an intermediate merge target for CRs which are agreed.
	meeting/SA93e

	cr/{deliverable}/{CR number}
	Branch representing a CR
	cr/33128/0987

4.3 – Tagging convention
	Tag name
	Description
	Example

	spec/{deliverable}/{version}
	Tags a published version of a given deliverable
	spec/33128/17.1.0

	output/{meeting title}
	Tags the output of a given meeting
	output/SA93e

Annex A – Repository configuration
We propose each repository is configured as follows:
Permissions
Delegates with a Forge account and who request access to the repository are given Developer access.
Developers may fill the CR Author role, and do the following
Create new public branches
Push commits to unprotected branches
Create merge requests
Contribute to the Issues and Wiki areas
Only Maintainers are permitted to the following:
Accept Merge Requests on protected branches (meetings and releases)
Create tags
Merge Requests
The repository Merge Method is set to “Merge commit with semi-linear history”. This only allows merges when fast-forward merging is possible, but allows the user to rebase automatically via the GUI.
Merge Requests are allowed to be merged even if the CI/CD pipeline fails. This allows CRs that fail the pipeline to still be agreed, although this should only be done by exception.
Branches
The default branch is set to main
main and meeting branches are protected.
CI/CD
A CI/CD pipeline is created to automatically check all commits for ASN.1 or XSD syntax errrors and contraventions of the drafting rules.

Annex B - FAQ
Why do you have a single repository, rather than one per deliverable?
Repositories incur a maintenance overhead for ETSI Forge staff and 3GPP delegates involved in maintaining them. Having a single repository minimises this overhead, and makes it very easy to share test fixtures between deliverables as required.
Why do you have directories for each release, rather than a branch for each release?
Either would work, but the directory structure is much easier to understand for delegates who are not familiar with git - which is almost all of them.
For developers, who often have to work against multiple releases concurrently, it also makes it easy to access multiple releases simultanesouly, without having to clone the repository multiple times.
Why do create an MR before you've pushed any commits to the CR branch?
Gitlab MRs carry more information than git branches, such as source and destination branches, pipeline statuses and labels. These can be used via the Gitlab API to provide tooling to assist CR Authors in their work, and by the automated testing to do things like detection of merge conflicts.
The Gitlab web interface for MRs also provides some useful tools, such as comment threads and a simplified diff view, making it easier for delegates to understand what a given CR is proposing to change.
We ask that the MR is created at the beginning of the change request so that this information is available for the whole life of the CR.
Why do you squash commits for CR/MRs but not for the meeting branch?
CR/MR commits are squashed to make the commit history manageable. However, when merging down after a meeting it is useful to retain traceability to a particular CR (e.g. in git blame).
Why do you retain the source brances for CR/MRs but not for the meeting branch?
SA plenary could decide to reject a particular CR. Retaining the original branches up to this point makes it a little easier to unpick things if this happens. Once SA plenary have agreed things, then all the intermediate branches (both meetings and CRs) can be removed safely.
How do I get a version of a specification which isn't the latest in a release?
This is what tags are for.
https://forge.3gpp.org/rep/sa3/li-trial/-/tags
Let's assume you want to look at the deliverables in TS 33.128 v16.1.0. You won't find it if you browse the main branch of the repository, because the 33128/r16 directory contains the latest published version in each release – and v1.6.1.0 isn't the latest R16 version of TS 33.128.
Instead, you use the fact that each published version is tagged in the repository, in just the same way that software versions are tagged in normal development repositories. The tagging convention (see clause 4.3) tells us that the correct tag is spec/33128/16.1.0. You can use the Forge UI or git command line tool to view, compare and download the repository as it was at that point in time.
