3GPP TSG-SA3LI Meeting #80-LI-e-b 	S3i210118
e-meeting 2nd Mar – 4th Mar 2021												

Source:	PIDS
[bookmark: _GoBack]Title:	Discussion on LI behaviour when using SMF sets
Document for:	Discussion
Agenda Item:	3
1	Decision/action requested
This discussion document argues the need to specify how the LI capabilities should work when using SMF sets, in particular with respect to the use of XID and its generation by the ADMF and the TFs in the SMFs.
2	References
[1]	3GPP TS 23.501, System architecture for the 5G System (5GS)
[2]	3GPP TS 33.127, Lawful Interception (LI) architecture and functions
[3]	3GPP TS 33.128, Protocol and procedures for Lawful Interception (LI)
[4]	ETSI TS 103 221-1, Part 1: Internal Network Interface X1 for Lawful Interception
[5]	3GPP TS 33.126, Lawful Interception requirements
3	Introduction
The 5GC architecture specified in TS 23.501 [1] includes the possibility of having SMFs working in a set (SMF set). This set of SMFs jointly manages the sessions of a group of users and a single UPF. Each SMF in the set has its own LI functions (IRI-POI and CC-TF), and the SMFs can be volatile. During the lifetime of a LI task on the POI of the UPF, different TFs can be expected to have to handle it, potentially causing issues, chief among them being consistent with the values of XID (LI_X1 identifier).
4	Background
[image:][image:]Following TS 23.501 [1], NFs can operate in so called NF sets. These sets of functions need to share their state in order to be able to pick up the work of the other task. One function that is expected to make use of this feature in cloud-native 5GC architectures is the SMF. State information can be shared by using a shared UDSF (see Figure 1a) or by sharing the information directly between functions (Figure 1b). The approach using a UDSF can be used when having very short lived SMFs working as microservices. On the other hand, the approach sharing SM context directly can be used for rescaling, but the functions are longer lived. Figure 1b - SM context transfer in SMF sets
Figure 1a - SM context transfer in SMF sets

4.1 SMFs sharing information through a UDSF
When the SMF functions share information using a UDSF, the functions can have a shorter lifespan. The collection of SMFs in a set will handle requests based on which SMF is available. When an SMF has handled a request, the SM context is stored in the UDSF. When a new request to, for example, modify or release a PDU-session arrives, most likely a different SMF from the SMF set is assigned to handle that request. The new SMF first has to retrieve the SM context for the particular PDU-session from the UDSF before it can execute the request, see Figure 2.
The short-lived nature of the functions in this approach can be a problem. This issues are explained in more detail in section 5 (Issues). In short, after an SMF CC-TF activates a task on the UPF CC-POI and the SMF together with its CC-TF is removed, the relationship between the CC-TF and CC-POI task is lost, making it impossible to determine when to modify or deactivate the CC-POI task.Figure 2 - Different SMFs in a set sharing SM context information possibly related to the same PDU session

4.2 SMFs sharing information directly
When the SMF function share information directly, the transfers of information are generally done for the purpose of rescaling the network. In these cases the SMF will not necessarily be removed after it completes its task, which simplifies the management of tasks in the UPF CC-POI. Consider we have an SMF with a CC-TF (SMF1 and CC-TF1) and there is an active task in the UPF CC-POI, and SMF1 needs to be removed transferring its context to another SMF (SMF2 with CC-TF2). When SMF1 transfers its context SMF2, the new CC-TF2 can activate a new task on the UPF CC-POI and then CC-TF1 deactivates the original task. This could cause a short period during which xCC is duplicated.
On the other hand, with this approach it is more probable that 2 separate SMFs handle different PDU sessions for the same UE, which can produce complications.
4.3 SMF/UPF LI architecture
Each SMF contains both an IRI-POI, for interception and delivery of IRI messages to the MDF, and a CC-TF that will control the interception of the user communication in the UPF CC-POI. The standards allow the possibility of having an IRI-TF on the SMF and an IRI-POI in the UPF, but the difference between the IRI-TF/IRI-POI and the CC-TF/CC-POI does not affect this discussion. In this document will simply refer to them as TF and POI.
The SMF TF acts like an “ADMF” for the UPF POI, activating, modifying and deactivating tasks. The main ADMF in the LI system is not allowed to make changes to the tasks in the UPF POI directly.
The TF uses 3 types of information to function properly, the information provisioned by the main ADMF, the information present in the SMF, and the state generated by the TF while acting as an “ADMF” for the POI in the UPF. The state information generated in the TF needs to include the XID of the tasks activated in the POI. The XID is used to identify the task, and that identifier is necessary to modify or delete the task.
The TF can send the following messages to the POI using the LI_T2/LI_T3 interface:

ActivateTask message, for triggering the POI in the UPF [3], based on table 6.2.3-6/6.2.3-9:
	ETSI TS 103 221-1 field name
	Description
	M/C/O

	XID
	Allocated by the TF as per ETSI TS 103 221-1 [4].
	M

	TargetIdentifiers
	*** Not relevant for the discussion in this document ***
	M

	DeliveryType
	*** Not relevant for the discussion in this document ***
	M

	ListOfDIDs
	*** Not relevant for the discussion in this document ***
	M

	CorrelationID
	Correlation ID to assign to X3 PDUs generated by the CC-POI in the UPF.*1
	M

	ProductID
	Shall be set to the XID of the Task Object associated with the interception at the CC-TF. This value shall be used by the CC-POI in the UPF to fill the XID of X3 PDUs.*1
	M

1: The same is true for the IRI-POI in the UPF except that it assigns it to X2 PDUs.
ModifyTask message, contains the same details as the ActivateTask of the task that we want to modify, with the TargetIdentifiers updated as appropriate [3]. So the message fields are:
	ETSI TS 103 221-1 field name
	Description
	M/C/O

	XID
	Same XID as used in the related ActivateTask
	M

	TargetIdentifiers
	*** Not relevant for the discussion in this document ***
	M

	DeliveryType
	*** Not relevant for the discussion in this document ***
	M

	ListOfDIDs
	*** Not relevant for the discussion in this document ***
	M

	CorrelationID
	Same CorrelationID as used in the related ActivateTask
	M

	ProductID
	Same ProductID as used in the related ActivateTask.
	M

DeactivateTask message, deactivates the task using the provided XID [3,4], the message is:
	ETSI TS 103 221-1 field name
	Description
	M/C/O

	XID
	Same XID as used in the related ActivateTask
	M

The XID values are generated independently by each “ADMF” (for example the main ADMF or the TF functioning as an ADMF for a POI). The XID is a version 4 UUID, therefore it is unique and different ADMFs cannot guess what is the XID assigned to a task by another ADMF. This identifier needs to be provided in order to activate, modify and deactivate tasks
5	Issues
We have identified 5 potential issues:
5.1 Endless interception
In short, when an intercepted user connects, the SMF creates a new PDU session and the TF sends an ActivateTask message to the POI in the UPF with a new unique XID. This SMF is then deleted together with its TF. The task will only be deactivated if the right XID is provided, but no other TF knows the XID, so the task will never be deactivated.
For more details, see figure 3. In the figure, an intercepted user requests a PDU session, and an SMF in the SMF set (SMF1) establishes the PDU session. The TF in SMF1 (TF1) sends the ActivateTask message to the UPF POI with a new unique XID (X_TF1). After the PDU session is established, SMF1, which contains TF1, is deleted, removing also TF1. When the UE wants to close its PDU session, a different SMF in the set picks up the request (SMF2) with a different TF (TF2). SMF2 releases the PDU session and TF2 should deactivate the interception task, but it doesn’t know the value X_TF1 and possibly doesn’t know that there is an interception task active in the POI. The interception task in the UPF POI is never deactivated.
The consequences will depend on how the system is implemented. At best, it will waste memory resources at the UPF POI. The UPF POI accumulates the data from activated tasks but it doesn’t provide interception data because the PDU session has changed.
At worst, the interception in the UPF POI will never expire. Every time the user reconnects, the UPF POI sends xCC (and maybe xIRI) to the MDF function even after the period in the interception warrant has expired, possibly violating the LI requirements in [5] R6.3-400 (target specificity), R6.4-150 (duplication), R6.5-10 (interception time period) and possibly others.

[image:]Figure 3 – A task activated by a TF might not be possible to deactivate after the TF ceases to exist.

The ETSI standards contemplate an optional field that might help resolving this issue, ImplicitDeactivationAllowed. It is described as: “Indication that a Task may implicitly deactivate itself once the NE has determined that it has completed.[…]”. This flag was drafted for scenarios in which a task was meant to produce a single xIRI. The UPF POI would probably not have any way of knowing when to terminate the task, or at least it has not been defined yet.
5.2 Double interception
Another issue can arise when a UE establishes a PDU session without the previous interception task having been deactivated, as in section 5.1.
See figure 4 for a detailed explanation. In the figure, SMF1 is spun up with TF1. TF1 is provisioned by the ADMF with a task using XID = X_ADMF1 concerning UE1. UE1 requests a PDU session, and therefore TF1 provisions the POI in the UPF with a task, using a new unique XID = X_TF1 and using for the ProductID the XID of the task in the TF (ProductID = X_AMDF1). SMF1 and its TF are removed and later the UE disconnects as shown in the issue 51. The task related to UE1 remains active in the UPF POI. The UE requests a new PDU session request, which is handled by another SMF in the set (SMF2) containing a TF (TF2). TF2 is provisioned by the ADMF with a task for UE1 using XID = X_ADMF2. Currently, the ADMF could use different values for X_ADMF1 and X_ADMF2, we assume it does. TF2 provisions the POI in the UPF using a new XID and giving X_ADMF2 as the ProductID. The older task that should have been removed could continue intercepting traffic from the UE. This will cause that the POI sends 2 streams of data to the MDF with different ProductIDs for the same UE.
As a consequence, this needlessly overloads the network between the UPF POI and the MDF, it’s worth noting that in this example the data is being sent twice but it could be n-times. Furthermore, the MDF cannot easily identify these streams as belonging to the same interception product, which can lead to violating some of the LI requirements in [5]. In particular R6.4 – 150 (duplication).

[image:]Figure 4 – Using SMF sets under the current implementation might lead to duplication of intercepted traffic.

5.3 Distinction between tasks in the UPF POI
Each X1 interface is meant to be separate, with an ADMF-like function and an NE. Even if different SMFs knew the XIDs used by each other to manage tasks in the UPF POI, the UPF POI is required (if following the specs strictly) to treat the same XID coming from different SMFs as different XIDs. This is derived from [4] clause 4.1.2:
“Only one ADMF shall make changes by X1 to a given NE. This is called the ADMF which is "responsible" for that NE. [...] Some deployments may involve multiple ADMFs for redundancy or other purposes; where multiple ADMFs are required, the NE shall be implemented such that it presents itself as a separate NE to each ADMF.”
This specification was introduced by ETSI TC LI to avoid the complexities of having NEs being controlled by multiple functions. It may be safe to relax this restriction, as the XID is implemented as a UUID which ensures that XIDs for different tasks generated by different SMFs will have different XIDs. It could also be interpreted that the TFs in a same SMF set are part of the same “ADMF”.
5.4 Undetectability of LI processes asynchronous to target communication
There are LI processes that occur asynchronously to the target communication. For example, the LEA can cancel a warrant at any time, change the delivery destination, or make a mid-call interception. In a microservices based architecture SMFs are “purpose-built”, they are spun up, perform the required task, and are removed. The simplest approach to tackle this type of LI processes would be to create a new SMF, the SMF TF makes the required changes in the UPF POI, and the SMF is destroyed again.
In that case, from the rest of the network it would look like an SMF has been spun for no apparent reason, and then has been removed. This can make it clear that LI activity is taking place, which can violate security requirements such as [5] R6.6 – 30 (Undetectability by non-authorized parties) or R6.6 – 80 (Interception capability undetectability).
5.5 Violating standards (without real consequences)
Assuming that we have fixed the issue of “losing” the XID of a task once the TF is removed, the CorrelationID can potentially violate TS 33.128 clause 6.2.3.4 and clause 6.2.3.3.1
SMF1 sends an ActivateTask message using CorrelationID = CID1. Later, another SMF (SMF2) sends a ModifyTask message for that same task. If it only knows the value of XID used by SMF1 and the information provisioned from the ADMF, the CorrelationID will be different, let’s say CorrelationID = CID2 ≠ CID1.
On the one hand, having a different CorrelationID shouldn’t impact the behavior of the LI functions as long as the IRI-POI and CC-POI of the UPF use the new value (CID2).The xIRI and xCC information would still be correlated. On the other hand, this contradicts TS 33.128 clause 6.2.3.4 and clause 6.2.3.3.1. Those say:
“The ModifyTask message contains the same details as the ActivateTask message with the following fields [TargetIdentifiers only] updated as appropriate”
This can be fixed in 3 ways:
· Sharing the CorrelationID
· Query the UPF CC-POI for the task details using the XID of the task and use that CorrelationID.
· Allowing the CorrelationID to be updated in the ModifyTask messages as long as the xIRI and xCC use the same CorrelationID. If the xIRI is being generated in the SMF IRI-POI, the CC-TF should change the CorrelationID there. If the xIRI is being generated in the UPF IRI-POI, the CC-TF and the IRI-TF should use the same CorrelationID and modify the tasks at the same time.
6	Possible solutions
Not all of the solutions manage to address all the problems but they are still valuable, as they can be combined or spark new solutions that can be better. We have identified 2 approaches to solving these issues, making the XID used by a TF available to other TFs, and removing the need to know the XID used by other TFs. On top of that, many solutions assume certain capabilities that would also need to be implemented, those are covered in the “first-steps” section.
6.1 First steps
6.1.1 Set-aware ADMF
Many solutions require the ADMF to provision the SMF LI functions based on the set that they belong to. In most cases this means that the ADMF must provide the same XID to different SMF LI functions in the same set for the same interception, in other cases it means that the ADMF provides access to the right shared storage or provides specific state information.
In either case, the ADMF need to be aware that an SMF is part of set and know to which set it belongs to. This information can be provided by the NFV MANO.
6.1.2 UPF POI doesn’t distinguish equal XIDs by origin
Most of the solutions involve a TF managing the task initiated by another by using the same XID. For these to work, the UPF POI cannot distinguish tasks based on the identity of the TF allocating it. Based on the issue described in 5.3, this is not currently the case. It may be safe to relax this restriction, as the XID is implemented as a UUID which ensures that XIDs for different tasks generated by different SMFs will have different XIDs. One possibility would be to regard different TFs in the same SMF set as part of the same “ADMF”, or “distributed ADMF”, as they are expected to work in cooperation with each other.
6.2 Solutions for “sharing” the XID
6.2.1 Using ADMF for LI state storage
A possible solution can be to transfer the internal state from one TF to the next. In that way, the TFs can know which tasks have been activated on the POI and with what details. This allows them to deactivate and modify those tasks.
[image:]A mechanism for storing the state could be as shown in figure 5. When a TF sends a message to the POI, it sends another copy of the message contents to the ADMF, this can be encapsulated in a (as of yet undefined) Store message. The ADMF would keep track of the active tasks for the SMF set in a somewhat intelligent way, when a task is deactivated it will be removed, and when it is modified it will be updated, instead of keeping a log of all the messages.Figure 5 – Illustration of a possible mechanism to store LI state in the ADMF

When a new TF in the same set appears, the ADMF provisions it with the relevant tasks as usual and also restores the internal state of the TF. This can be done by wrapping in a (not yet defined) Restore message which includes the details for all the tasks currently active at the POI managed by TFs in the set.
This approach dilutes the separation between the TFs and the ADMFs, forcing the ADMF to keep track of everything that happens within the TFs.
6.2.2 LI State Storage Function (LISSF)
Another option is to create a new logical function for storing LI state information. A possible name could be LI-UDSF but to avoid confusion we prefer the name LI State Storage Function (LISSF). When a new SMF in a set is spun up, the ADMF will provision the SMF's LI functions and authorise them to access the LISSF. The LISSF can be implemented as part of the ADMF or a separate logical function.
[image:]Figure 6 – Possible architecture when using an LISSF, another possibility is having it inside the ADMF.

6.2.3 TFs query the UPF POI for specific ProductIDs
Another way in which TFs can retrieve the XID used by other TFs would be to query the UPF POI. In order to identify the tasks, the TFs must be provisioned using the same XID for the same tasks (see 6.1.1). The TFs could then query the UPF POI for tasks using a specific ProductID. Once they receive the task details for the specific ProductID, they will obtain the value of XID, which can then be used to manage the task.
6.2.4 ADMF queries UPF POI for state information
The ADMF could make use of the LI_X1 Management interface to the UPF POI to obtain up to date state information. The ADMF could then provision the TFs with LI state information (such as what tasks are currently active in the UPF POI and what are their XIDs).
6.3 Removing the need to share XID
6.3.1 Implicit deactivations
Another possible solution is to take advantage of the ImplicitDeactivationAllowed field defined by ETSI in [4]. Including this field as mandatory for messages originating from a TF within an SMF set allows the POI to deactivate the tasks once they are no longer needed. This option would only work if the UPF POI can accurately deactivate the tasks at the right time, which is unclear and improbable in more complex cases.
This approach places the responsibility of deactivating a task on the UPF POI, which might not be able to access the right information to make that decision, but it keeps the architecture of the LI system mostly unchanged.
6.3.2 Eliminate the ProductID/XID distinction
Currently, the TFs generate a new XID independent from the XID associated to the task allocated by the ADMF. The XID allocated by the ADMF is used as the ProductID, which is used to identify the interception product coming out of the UPF POI.
If the TFs used the XID allocated by the ADMF to manage tasks in the UPF POI, once the TF is removed the ADMF can provide the same XID to other TFs in order to manage the active task. This solution would blur the distinction between the TFs and the ADMFs. On top of that, if a UE establishes more than one concurrent PDU session, it could be difficult to activate a task to intercept it because there is already another task using the same XID.
6.3.3 Remove TFs
Eliminate the TFs and manage the UPF POI directly from the ADMF. This radical solution eliminates all the issues derived from having TFs but would cause a large number of changes in the LI specifications, and possibly, many new problems.
7	Conclusion

	
 Issues

 Solutions
	Endless interception
	Double interception
	Undetectability of LI processes asynchronous to target communication
	Violating the standards
	Notes

	Using ADMF for LI state storage
	✓
	✓
	?
	✓
	

	LI State Storage Function (LISSF)
	✓
	✓
	?
	✓
	

	TFs query the UPF POI for specific ProductIDs
	✓
	✓
	?
	✓
	Probably the simplest solution

	ADMF queries UPF POI for state information
	✓
	✓
	?
	✓
	

	Implicit deactivations
	✓
	✓
	✓
	?
	Modifications are not possible. Probably not doable

	Eliminate the ProductID/XID distinction
	✓
	✓
	?
	?
	Easy separate solution for last issue

	Remove TFs
	✓
	✓
	✓
	✓
	Radical

A solution is needed for this problem. None of the proposed solutions is perfect, and there might be other alternatives that have not been considered in this document. We propose that this issue is discussed and ideally a solution is agreed. The exact implementation of the solution (with CRs) is left for later.
2

image1.png
SMF set

SM context

image2.png
SMF set

SMF 1 SMF 2 000 SMF N
SM context
SM context Sl UiEtr SM context

image3.png
2-Request

2-Request
SM context

5 - Update SM context

image4.png
2-Request

2-Request
SM context

5 - Update SM context

image5.png
SMF set
ADMF TF1 SMF1 TF2 SMF2 POI UPF
SMF1 spun up—|
ActivateTask
XID = X_ADMF1
TargetList = UE1
PDU session
request
For UE1
ActivateTask
XID = X_TF1
TargetList = UE1
ProductlD = X_ADMF1 o
Session
establishment
SMF1 removed XxCC/xIRI
XID = X_ADMF1
ActivateTask SMF2 spun up
XID = X_ADMF1
TargetList = UE1 _
PDU session
release
For UE1

DeactivateTask

XID =777

Session release

SMF2 removed

image6.png
SMF set
ADMF TF1 SMF1 TF2 SMF2 POI UPF
SMF1 spun up—|
ActivateTask
XID = X_ADMF1
TargetList = UE1
PDU session
request
For UE1
ActivateTask
XID = X_TF{
TargetList = UE1
ProductlD = X_ADMF1 _
Session
establishment
SMF1 removed XxCC/xIRI
XID = X_ADMF1
PDU session is released but the interception task cannot be removed
ActivateTask SMF2 spun up
XID = X_ADMF2
TargetList = UE1
PDU session
request
For UE1 ActivateTask
XID = X_TF2
TargetList = UE1
ProductID = X,ADMFE
Session
establishment
XCC/xIRI
SMF2 removed XID = X_ADMF2
XCC/xIRI
XID = X_ADMF1

image7.png
SMF set

ADMF TF1 SMF1 TF2 SMF2 POI UPF
SMF1 spun up—|
ActivateTask
XID = X_ADMF1
TargetList = UE1
PDU session -
request
For UE1 o
ActivateTask
XID = X_TF1
TargetList = UE1
ProductID = X_ADMF1
ActivateTask
Store(ActivateTask) acknowledge
XID = X_TF1 <
TargetList = UE1
ProductID = X_ADMF1
Session
establishment
SMF1 removed XxCC/xIRI
XID = X_ADMF1
ActivateTask SMF2 spun up
XID = X_ADMF1
TargetList = UE1 _
Restore(ActivateTask)
XID = X_TF1
TargetList = UE1
. ProductID = X_ADMF1
PDU session
release
For UE1

DeactivateTask
XID = X_TF1

Session release

SMF2 removed

image8.png
SM context

functlon functlon function

LI state
LI state LI state
LISSF

LI state

