

	
3GPP TSG-SA3 Meeting #77-LI-e	S3i200114
Online, 21st Apr 2020 - 24th Apr 2020		

Source:	NTAC
Title:	Proposals for using the ETSI Forge in SA3-LI
Document for:	Decision
Agenda Item:	11.2
Work Item / Release:	LI16
Abstract of the contribution:
This contribution proposes how SA3-LI should use the ETSI Forge as part of the CR process for the machine-readable (i.e. ASN.1 and XSD) parts of our specifications.

1 - Summary
This contribution seeks endorsement for the following actions:
Setting up ETSI Forge repositories as described in section 2
Adopting the processes described in section 3
Adopting the branching and tagging conventions defined in section 4
2 - Repositories
We propose creating a repository for each distinct SA3-LI deliverable. This aligns the Forge’s basic unit of revision management (a repository) with 3GPP’s (a deliverable).
In addition, we propose creating a repository for any shared assets required by more than one SA3-LI deliverable. This would include test fixtures and scripts used to validate ASN.1 and XSD schemas.
The list of proposed repositories is therefore:
TS 33.128
TS 33.108
Shared components (testing)
	?
	3GPP releases are maintained and version controlled separately. Changes to each release must be made separately, even if they are identical. Since there can never be the equivalent of a “merge” from one release to another, would it make sense to represent each release as a separate repository? This would make the branching conventions significantly simpler, at the cost of increasing the number of repositories.

Annex A contains the appropriate request forms to seek the creation of the repositories as described.
Annex B contains information on how the repositories should be configured, including user permissions and default branch behaviours.
3 - CR process
We propose the following profile of the ETSI Forge CR process outlined at https://forge.etsi.org/rep/etsi-cti-admin/forge-contributions-documentation?nav_source=navbar.
Step 0 - Preparing for a meeting
The Maintainer creates a meeting branch (i.e. branch specific to the meeting) following the branching convention given in section 4.
Step 1 - Drafting a CR
The CR Author creates a branch specific to their CR, following the branching convention given in section 4.
The CR Author (and any collaborating parties) commits the desired changes to their branch
Changes made to the CR branch are visible to anyone with access to the ETSI Forge. Delegates may comment on and, if appropriate, contribute to, the changes in the CR branch.
Step 2 – Submitting a CR to a meeting
The CR Author creates a Merge Request from their CR branch to the desired meeting branch.
Changes for a CR are made in a branch of their own (see Branching convention)
When ready for submission, the CR contributor makes a Merge Request from the CR branch to the meeting branch. The CR author should ensure that the current commit passes any automated syntax and drafting rule checks before raising the Merge Request.
The CR Author prepares a CR document as per the existing 3GPP processes. This CR should contain changes to the specification document. A reference to the Merge Request (including a link) is given in the “Other Comments” section of the CR cover sheet.
	?
	Referring to the Merge Request does not tie the CR to a specific commit. This means that the CR form does not have to be updated if further changes are made to the CR branch. This may or may not be desirable. If we would prefer CRs to be tied to a specific commit, then we can alter this step to include the commit hash. The Maintaner would then be responsible for ensuring that the Merge Request merges the correct commit.

Step 3 – Consideration of the CR at the meeting
For a CR to be considered it should pass the relevant ASN.1/XSD syntax and linting checks.
The CR Author presents both the CR form and the associated changes in the ETSI Forge to the meeting.
The CR Author makes any necessary changes by making additional commits to the CR branch. The CR form is updated as necessary following the usual process.
Step 4 - Agreement of the CR
When the CR is agreed, the Maintainer accepts the merge request into the meeting branch
	!
	Accepting a Merge Request may result in a Merge Conflict appearing for any other CRs that have yet to be agreed. The repository configuration given in Annex B ensures that in most common cases these can be automatically resolved in the Forge UI. However, if two changes genuinely conflict (i.e because they change the same piece of code) then the conflict will require manual resolution. This is already true today – but this processes ensures that the conflict must be resolved prior to agreement and is properly audited.

When accepting the Merge Request, the Maintaner ensures that commits are squash, but branches are not deleted yet.
	?
	We squash commits to keep the commit history manageable.
We retain the branches for convenience in case we have to back changes out following consideration by SA plenary (see Step 5). Alternative approaches are possible, particularly if the CR form carries the commit hash.

Step 5 - Agreement of the CR
Once the changes are confirmed by SA and the new version of the spec is published, the Maintainer merges the agreed meeting branch into the relevant release branch.
The Maintainer tags the head of the release branch following tagging convention given in Section 4.
The Maintainer removes the meeting branch and any remaining CR branches.
	?
	If SA reject a change, it will need to be backed out of the meeting branch. Backing out a change may require repairing further conflicts (e.g. if an element is removed from the middle of a SEQUENCE). This is perfectly possible (indeed, it is one of the things that source control makes easier to manage). However, it isn’t clear who takes responsibility for doing this.
Who would take responsibility for backing out changes if SA plenary rejected them today?

4 – Branching and Tagging conventions
We propose the following convention for branches in each repository associated with a deliverable.
	Branch
	Description
	Example

	rel{release}
	Latest version of a release
	rel16

	r{release}/meeting/{meeting number}

	Branch representing agreement of a meeting
	r16/meeting/sa3#77-LI-e

	r{release}/cr/{CR number}

	Branch representing
	r16/cr/cr0077

We propose that each published version in the release branches is tagged. The tag follows the standard version numbering convention (e.g. “v16.4.0”).
The release notes for each tag contain the relevant extract from the document’s revision history, indicating which CRs were accepted.

Annex A – Forge repo creation requests
This Annex contains the request forms required to create the repositories as described in section 2.
TS 33.128
Repository Title: TS 33.128
Repository URI: TS33128
Repository namespace: rep/SA3LI/TS33128
Repository description: TS 33.128 machine-readable deliverables
Issue tracker requested: Yes
Issue tracker type (Bugzilla / Gitlab): Gitlab
Issue tracker specific requirements: None
Wiki pages requested: Yes
Visibility: Public
Mirror on Github: No
Other requirements: None
TS 33.108
Repository Title: TS 33.108
Repository URI: TS33108
Repository namespace: rep/SA3LI/TS33108
Repository description: TS 33.108 machine-readable deliverables
Issue tracker requested: Yes
Issue tracker type (Bugzilla / Gitlab): Gitlab
Issue tracker specific requirements: None
Wiki pages requested: Yes
Visibility: Public
Mirror on Github: No
Other requirements: None

SA3-LI Shared Resources
Repository Title: SA3LI Shared Resources
Repository URI: sa3lishared
Repository namespace: rep/SA3LI/TS33108
Repository description: SA3LI shared resources
Issue tracker requested: Yes
Issue tracker type (Bugzilla / Gitlab): Gitlab
Issue tracker specific requirements: None
Wiki pages requested: Yes
Visibility: Public
Mirror on Github: No
Other requirements: None

Annex B – Respository configuration
We propose each repository is configured as follows:
Permissions
Delegates with a Forge account and who request access to the repository are given Developer access.
Developers may do the following
Create new public branches
Push commits to unprotected branches
Create merge requests
Contribute to the Issues and Wiki areas
Only Maintainers are permitted to the following:
Accept Merge Requests on protected branches (meetings and releases)
Create tags
	?
	Given the role that Maintainers play, it seems likely that only ETSI Forge staff and the meeting’s Technical Officer will be allowed to be Maintainers. We need to verify that this is compatible with the responsbilities they will have during the meeting (we need Maintainers to do things during the course of an active meeting), or investigate if it is possible to assign more people to the group of Maintainers.

Merge Requests
The repository Merge Method is set to “Merge commit with semi-linear history”. This only allows merges when fast-forward merging is possible, but allows the user to rebase automatically via the GUI.
Merge Requests are allowed to be merged even if the CI/CD pipeline fails. This allows CRs that fail the pipeline to still be agreed, although this should only be done by exception.
Branches
The default branch is set to the latest release version (e.g. Rel16).
Meeting and release branches are protected.
CI/CD
A CI/CD pipeline is created to automatically check all commits for ASN.1 or XSD syntax errrors and contraventions of the drafting rules.
	?
	This requires someone to provide the compute resources for the pipeline to run. Ideally, this would be done centrally by ETSI or 3GPP.

