3GPP TSG-SA WG3 LI Meeting #70
S3i180333
Lecce, IT; July 17-20, 2018

Source:
NTAC
Title:
Further ideas on drafting rules for TS 33.127 / 128
Document for:
Discussion
Agenda Item:
11
Work Item / Release:

Abstract of the contribution: This document is builds on the discussion points raised in Nokia’s contributions s3i180327 - 9
The Problem
Nokia’s contributions highlight a number of possible lessons learned with the presentation and structure of TS 33.108, and provides some good ideas for improving TS 33.128. The comprehensive analysis in S3i180327-9 appear to highlight two key objectives that TS 33.128 must:
· Instruct a developer on how to correctly use each field in the stage 3 definitions
· Allow SA3-LI to ensure consistency and completeness tracing stage 2 information through to stage 3 definitions.

These could be thought of as mapping problems in two different directions – the first mapping stage 3 fields to stage 2 parameters, the second mapping the other way. In any case, I think it is useful to consider these issues separately.

Nokia’s contribution and proposed solution

Nokia’s submission makes useful observations and suggestions for improving current drafting practices to meet the objectives of TS 33.128.
Some of the later drafting rules try to formalise a way of describing which stage 3 ASN.1 field you should use for each stage 2 parameter. There is evidence of this being done in an ad-hoc way in TS 33.108, and Nokia’s document proposes standardising it by defining a meta-language for locating ASN.1 elements in a structure. This is a valid solution, but:

· It solves the second objective of mapping stages-2-to-3, but not first of mapping stage-3-to-2 (which I think is more important)

· Creating novel meta languages is, in general, a Bad Idea

· This one will be specific to ASN.1, which may also be a Bad Idea

It is natural to approach it this way given the current structure of the stage 3 specs. If we allowed ourselves to be a bit bolder, we could go further and avoid the problem occurring in the first place.

The rest of this contribution attempts to build on some of Nokia’s proposals in this way.
Concrete Proposals

Rule 1 (From Nokia) – Establish our vocabulary.

Nokia’s contribution suggests defining some agreed terms before we start, which is always a good idea. I propose a slight modification of the Nokia rule as follows:
· Parameter – the name of the stage 2 information element (e.g. “Event type” or “Serving MME address”).
· Field – the name of the stage 3 information element, as it appears in the relevant ASN.1 or other schema (e.g. “eventType” or “servingMME-Address”)

· Type – the type assigned to a field (e.g. “INTEGER” or “OCTET STRING”), although I also suggest that if we need to use this much (because we are qualifying which field we’re talking about by describing their type) then we have gone wrong.

This means you don’t need to qualify everything with “stage 2” or “stage 3”, and “field” is a shorter and easier word to spell than “parameter”.
Rule 2 (From Nokia) – Establish a naming convention

Nokia’s contribution also proposes some naming conventions to aid in consistency and readability. I think this is is also a good idea. Nokia refer to “stage 3 parameter names”, but I think the idea can (and should) be applied to stage 2 parameters. I would formulate it as follows:
Rule 2.1:

Each word of a Parameter name should start with a capital letter

I would then propose to build on this with a few extra rules

Rule 2.2:

Any acronyms should be in upper case

Rule 2.3:

Parameter names should be descriptive, specific and (as far as practical) unique
This could give us e.g. “Event Timestamp”, rather than “timestamp”. Yes, this will likely make the names longer. But characters are cheap and being specific will help drive out ambiguity.

We could then add some stage 3 drafting rules (borrowing from ETSI TS 130 280):
Rule 2.4:

Field names should follow the name of the associated stage 2 parameter as far as is practical. Spaces should be removed, and the first letter should be lower case
.
Rule 2.5:

Type names should follow the name of any associated field or parameter names as far as is practical. They should by camel cased, and the first letter should be upper case3.
Nokia’s contribution gives some examples of what this might look like, such as:
Stage 2:

Lawful Interception Identifier

Stage 3:

lawfulInterceptionIdentifier
[1]
LawfulInterceptionIdentifier
There will very likely be places where it doesn’t make sense to follow all the rules – common sense should be applied. And obviously this won’t apply to fields and types that are imported. But even if we only adopt this rule (and none of the others), I think this will positively impact both TS 33.127 and 33.128.
Rule 3 – TS 33.128 should be written from a “stage-3-first” perspective

I think the primary purpose of TS 33.128 is to describe the format and syntax of messages for developers. That means it should start with the format (e.g. the ASN.1), and then describe how that format is used. Each field should be described in turn with reference to stage 2 where necessary.

In contrast, I don’t think that we should start by listing out all the stage 2 parameters, and then saying where each of them goes. This, as Nokia have correctly highlighted in their paper, leads to confusion and errors.
The current structure of TS 33.108 forces this to an extent. Worse, it forces a developer to flick from the front of the document (where the stage-2-to-3-mappings are described) and the back (where the ASN.1 definitions are) to understand how to use the messages. Developers hate doing this and eventually stop reading the prose
. This also results in unnecessary repetition, which in turn makes drafting and checking the standard harder.
Some suggested drafting rules are:

Rule 3.1:
Draft the TS 33.128 standard “stage-3-first” – describe each stage 3 field in turn, rather than the location of each stage 2 parameter in turn

Rule 3.2:
Minimise the amount of repition in the standard – avoid the need to declare and describe a field in multiple places

Rule 3.3:
Minimise the distance between the schema definition of a field and the prose describing how the field should be used
Some of this could be done by simply re-ordering the tables and making the first column the name of the stage 3 field. Or we could make more drastic changes to the way the specification is laid out. For example:

X.1
Message 1
X.1.1
Introduction

This section defines Message 1, and when it should be used.

X.1.2
ASN.1 definition

Message1Definition ::= SEQUENCE

{
foo

[1]

Foo,

-- See X.1.3 for usage
bar

[2]

Bar,

-- See X.1.3 for usage

...
}
X.1.3
Foo

This field is used to carry the stage 2 parameters Foo, and should be used in the following way.
(etc).

This attempts to minimise the distance between the ASN.1 and the description of the field, and the minimise the reptition between the parts of the document – we don’t need long tables summarising the fields, because the ASN.1 schema tells us what is in a message. This should make it easier to read and understand, and quicker to write and check.

This is only a suggestion, and it may be that other 3GPP or SA3-LI conventions prevent us from doing it exactly this way
. But if we If we follow this convention of “stage-3-first”, we may be able to avoid the necessity of finding ways of of solving the other, more complicated problems, as Nokia’s contribution attempts to do.
Rule 4 – Use the schema language to do more
A lot of the content of TS 33.108 is explanation of when certain fields should be populated. This requires a developer to understand and implement these rules correctly.
But we often use a schema language that can enforce certain things, like optionality. We should use this as much as possible such that the schema itself prevents developers from getting it wrong.
An example: our current “IRI-parameters” definitions are typically a big list of optional fields. It sort of looks like this:

BigListOfFields ::= SEQUENCE
{

foo

[1]

Foo

-- always requird

bar

[2]

Bar
OPTIONAL

-- required in situation 1

baz

[3]

Baz
OPTIONAL

-- required in situation 2
}
As mentioned before, this requires the developer to sift through lots of prose (in a totally different part of the document, as previously mentioned) to understand what to populate when. We also make mistakes in the standards group when we fail to correctly articulate all the edge cases and combinations that might occur.

Consider this instead:

PossiblyBetterDefinition ::= SEQUENCE
{

foo

[1]

Foo

-- always required

situationSpecificFields
[2]

CHOICE

-- force a positive choice

{

bar

[1] Bar

-- Choose this if you’re in situation 1

baz

[2] Baz

-- Choose this if you’re in situation 2

}

}

Here we have a CHOICE which forces the developer to choose which situation they are in, and then forces them to put the correct fields in. The syntax makes it’s impossible to populate both Bar and Baz, and impossible to forget to populate either. The syntax is helping enforce the intent of the specification.
The example is just that – an example. Doing this won’t always work. Creating anonymous types, as this example does, is usually a poor idea. There are also other valid ways of achieving the same ends (e.g defining completely separate message structures for the two situations).
The point of the example is to demonstrate a more general rule that I think we should adopt. We should try and use the syntax to enforce our intent, and not worry if that makes the schema longer or duplicates fields. It forces us to design our schema better, by making us articulate exactly what our intent is. It helps developers by removing the need for them to understand or remember what that intent is. And it helps cut down on the amount of prose required; in this example, we don’t need lengthy explanation telling that you must choose between the two situations, because the schema won’t let you do anything else.
To summarise this as a potential drafting rule:

Rule 4:
As far as is practical, enforce the intent of the specification by using features of the schema language chosen (e.g. ASN.1, JSONP, XSD).

� Although if we really decide that we absolutely must, and we are still using ASN.1, then we should probably use the language that ASN.1 defines itself (see X.680 section 14 “Notation to support references to ASN.1 component”, which defines a dot notation similar to many programming languages). JSON and XML also have query languages defined. But if we’re using these, I think we’ve gone wrong.

� As an aside, I don’t think the previous suggestion of “Parameter value” is correct here – in ASN.1, “value” refers to the actual contents of a concrete instance of a message, or a value assignment in a specification (see X.680 15.2). The correct term for a field in an ASN.1 SEQUENCE is “component” (see X.680 24.1). But that’s also a long word, looks odd, and is ASN.1 specific. I think “field” is better.

� While some of these casing rules are actually mandatory in ASN.1, we can apply them in JSONP and XSD too for consistency.

� Ask me how I know this.

� For example, it stops a developer copying out the ASN.1 module in one go. But again, do we really want developers copy-and-pasting ASN.1 from Word documents? ETSI stopped doing this years ago and instead supplies the ASN.1 schema as a separate file.

4

