3GPP TSG-SA WG3 Meeting #96
S3-192521
Wroclaw (PL), 26-30 August 2019
revision of S3-19xabc
Source:
Interdigital

Title:
Editorial corrections for TR 33.835
Document for:
Approval
Agenda Item:
8.3
1
Decision/action requested

Approve proposed editorial corrections for TR 33.835
2
References

1. TR 33.835-0.5.0
Study on authentication and key management for applications based on 3GPP credential in 5G3
3
Rationale

This contribution proposes editorial corrections for TR 33.835-0.5.0 aiming to improve the readability of the TR.
4
Detailed proposal

*** Start of Changes 1 ************************

5.1.1
Issue detail

The GBA/GAA features specified in TS 33.220 [2] leverage the EPS/UMTS authentication infrastructure (especially the HSS) to provide the security between the UE and an application function in the network with which the UE interacts on the User Plane. It should be noted that GBA uses UMTS AKA and that the HSS provides the CK/IK to the BSF instead of KASME.

Figure 5.1.1-1 below shows the architecture of the features. GBA allows mutual authentication and the establishment of shared keys between the UE and BSF over the Ub interface. GAA, on the other hand, enables using such shared keys for protecting the access to a NAF. In principle, GBA keys can be used to secure any protocol between a UE and a NAF over the Ua interface.

[image: image1.emf]HSS

BSF

UE

NAF

Zh

Ub Ua

GBA GAA

Figure 5.1.1-1: GBA and GAA reference architecture from TS 33. 220 [2]

Since the AKMA feature is intended to leverage the 5GS authentication infrastructure to provide similar services, it is understood that GBA/GAA would be one of the starting points for the architectural design of AKMA. However, due to differences between the 5GS and EPS/UMTS there is no direct equivalent of the BSF and HSS in the 5GC. These differences include, but are not limited to, the following:

-
The subscription data including the AKA credentials are stored in the UDM. However, it is another function, the AUSF, that is directly involved in the Primary Authentication procedure towards the serving PLMN.

-
The Primary Authentication procedure establishes a shared key (KAUSF) between the UE and the AUSF while no such key exits in the EPS key hierarchy.

-
The Primary Authentication is terminated in the AUSF by comparison to EPS where it is terminated in the MME.

-
All the internal interfaces in the 5GC are SBA-based by comparison to the DIAMETER-based Zh and Zn interfaces in GBA.

As shown in Figure 5.1.1-2, the AKMA architecture will naturally include an AKMA Application Function with which the UE communicates over the User Plane. The AKMA AF interacts with an anchor function, the BSF-equivalent, in the 5G Core. It is only logical to assume that such an anchor function is needed to authenticate the UE and potentially to provide key management services towards the AKMA AF.

[image: image2.emf]UE

AKMA

AF

5GC

UDM

AUSF

SEAF

?

?

?

?

?

?

Figure 5.1.1-2: Role of the anchor function in the AKMA architecture

Editor’s Note: Figure for non-standalone scenario is FFS.

Therefore, solutions to this key issue must address the following aspects.

-
How the anchor function is realized.

-
The interfaces involving the anchor function, the UE, the AKMA AF and other 5GS functions.

-
The procedures flow for the UE authentication and the management of the resulting bootstrapped keys used to secure the communication between the UE and the AKMA AF.
*** End of changes 1 ******************************
*** Start of Changes 2 *********************************
5.2.1
Issue details

In AKMA, application server needs to be able to securely exchange data with a UE based on the result of authentication and key derivation between mobile network and UE.

In AKMA, there are three different communication interfaces, namely, (1) the communication between UE and 3GPP network, (2) between UE and application server, and (3) between 3GPP network and application server. It is necessary to design the appropriate procedures. Considering the stage-3 work, the protocol used for AKMA procedure can be divided into two categories:
1. Using an existing transport protocol
The existing protocols for carrying parameters and transferring data refer to the protocols well designed and widely used by 3GPP, IETF and/or other standard organizations, e.g. PDCP layer protocol, TCP/IP, etc. Using such protocols can bring benefit for the procedure design, as the work can concentrated on the signaling/message flows. There will not be a need to pay much attention on considering how to design message type, format, and any other details as they are well defined in the protocols.

However, using existed protocol may bring some issue. If the communication is through specific application layer protocol, it will bring requirement for transport layer protocol. For example, if the communication is based on HTTP, then TCP shall be applied between UE and mobile network.

However, for some kinds of UEs, especially UE used for IoT, the resource is limited. It will influence UE can only implement few protocols due to its memory and calculation limitation. If application server communicates with UE by using specific application protocol, it implies that UE may could not implement other protocols. It raises the requirement for the communication between UE and mobile network. If the communication is based on specific protocol, some kinds of UE that could not implement such protocol is not able to support AKMA feature. That may limit AKMA usage.

2. Designing specific protocol for AKMA
Compared to using existed protocol, designing a specific protocol for AKMA allows for as much freedom as possible to design protocol types, formats and content. So specific protocol can be designed more flexible to fit for various lower layer protocols.
However, designing such specific protocol is generally difficult and it is debatable whether the protocol will be sufficiently robust. What is more, as it is newly defined, there will not be existing implementations. If only a custom designed protocol will be used, adoption of AKMA may be hampered by the lack of these implementations and competition of existing protocols. Depending on the use case, therefore, it should be considered to reuse existing protocols and only design new ones if existing protocols do not meet the specific requirements of AKMA.
*** End of changes 2 ******************************
*** Start of Changes 3 *********************************
5.6.1
Issue details
In current BEST[3] and GBA[2] solutions, 3GPP network is responsible to derive Keys from the root subscriber authentication key K (e.g., KE2Menc, KE2Mint , Ks_(int/ext)_NAF) for UE and application server. However, the application server may not want to use the key derived from the 3GPP network authentication key K. The application server may have a policy requiring the use of its own independently generated key (e.g., application specific key), but still require the use of features provided by the 3GPP network to distribute such a key. The proposed mechanism can satisfy the demand of application providers who do not wish to establish the secure connection by using only a 3GPP credential.
In some scenarios, such as when the UE sends sensitive data to application server, the application security policy may require that the 3GPP network operator does not have accesses to that data. In addition, the services provided by the application server may be accessed by multiple applications. Therefore, it is desirable that a solution that addresses this key issue supports establishment of separate application specific keys for each application that are served by the application server.

** End of changes 3 ******************************
*** Start of Changes 4 *********************************
5.10.1
Issue details
In different parts of the world, different rules and regulations apply with respect to the usage of cryptography. A service like AKMA that is intended to be deployed in many places around the globe should therefore be adaptable to the local situation.

In the case of AKMA, the operator is the facilitator of a service that can be used to agree a key between two parties which may not be under control of the operator. As such, operators in different parts of the world may be subject to some regulations with respect to providing key material to third parties.

Another potential use case of AKMA is that the operator facilitates end-to-end protection between a UE and a party outside of the operator domain. Also, in such cases, restrictions may be enforced by the regulators.

In order to enhance adoption of the service, AKMA needs to be made regulations aware such that the service can be used irrespective of where the UE resides.

** End of changes 4 ******************************
*** Start of Changes 5 *********************************
5.15.1
Issue details

During authentication, the UE and the network will derive a number of keys, in the following order:
-
KAUSF;

-
KSEAF;

-
KAMF;

Some of these established keys (or newly introduced keys specifically for AKMA) could be used as bootstrapping keys for AKMA. A likely candidate is KAUSF, which is what will be referred to in this key issue.

The KAUSF, however, is not part of the security context and a new KAUSF is derived at both the UE and the AUSF with any authentication, even if the resulting security context is never taken into use. As such, the AUSF and the UE may have a different view of which key is the current KAUSF. Similarly, if a specific key for AKMA is derived at the moment of authentication, the UE and the AKMA server may also get out of sync. As a consequence, the AKMA service may not be established because the UE and the AUSF / AKMA server are out of sync.

** End of changes 5 ******************************
*** Start of Changes 6 *********************************
5.17.1
Issue details

The GBA push feature specified in TS 33.223 [13] is a mechanism to bootstrap the security between a NAF and a UE, without forcing the UE to contact the BSF to initiate the bootstrapping. With the GBA push, the NAF can share a secret key with the UE, and to push messages to UE securely.

Considering that the push mechanism is an efficient way for the message transmission initiated by application function, and the interworking operation between AKAM and GBA for backward compatibility, it would be beneficial to support the push mechanism for the AKMA.

However, the GBA push security solution cannot be reused here. In this study, AKMA has defined different authentication procedures compared with authentication method specified in GBA, e.g., EAP AKA’, 5G AKA, etc. The push information generated based on the different authentication procedures shall be identified by the UE. Another difference would be that the keys already specified (e.g., KAUSF) in TS 33.501 may be reused in AKMA to generate the AKMA anchor key. Therefore, a new security mechanism for the AKMA anchor function to generate the AKMA push information and for the UE to verify push information are required.

** End of changes 6 ******************************
*** Start of Changes 7 *********************************
6.1.1
Introduction
The secure transferring between the UE and the 3rd party not only requires secure connection, but to some extent protects data from leakage to untrusted parties even including MNOs, especially for some large CIoT corporations. Current GBA solution provides secure connection for the application providers based on 3GPP credentials, however, it lacks mechanism to ensure end to end security. Therefore, introducing a third-party key to AKMA is an optional ability provided by 3GPP networks to protect data from UE all the way to the application server. The 3rd party key is defined as a secret key shared by the application server and the UE for application level communication. According to 3rd party service security requirements, whenever necessary to application providers, they can choose to use derived keys from 3GPP credentials and 3rd party keys to secure the end to end connection. This way, application providers can control over the key material specifically.
** End of changes 7 ******************************
*** Start of Changes 8 *********************************
6.1.2
Solution details
The proposed solution takes the current GBA procedure for example (Note: The related network elements and procedures in AKMA is FFS, the following figure 6.1.2-1 only illustrates the 3rd party key involving procedure). During the procedure using bootstrapped security association, after NAF fetches Ks_(ext/int)_NAF from BSF, if necessary, the 3rd party executes end to end key derivation and sends to UE an e2e flag indicating the use of combination key scheme. According to the e2e flag, the UE derives the end to end key which is used for the following secure connection between UE and 3rd party.

[image: image3.emf]UE

Evolved NAF

function

(3rd party)

Evolved BSF

function(MNO)

B-TID,Ks,Ka B-TID,Ks,Prof

Key derivation Ks->Ks_

（ ext/int)_NAF

according to flag

setting

1. Application Request

(B-TID,msg)

2. Authentication Request

(B-TID,NAF-Id)

3. Authentication Answer

(Ks_(ext/int)_NAF, Prof,

bootstrap time,

key lifetime)

The server stores

Ks_(ext/int)_NAF,

bootstrap time Prof and

key lifetime

4. Application answer

(e2e flag)

End to end key

derivation; stores

e2e_key

End to end key

derivation according to

e2e flag

msg is appl.specific dataset

Profis application specific part of user profile

Figure 6.1.2-1: Third party key to AKMA

Editor’s Note: It’s FFS that the 3rd party mentioned above could be key management service provider or application provider.
The e2e_key is derived according to:

e2e _key = KDF (Ks_(ext/int)_NAF, Ka);
where Ka is the 3rd party key defined in 6.1.1.
Editor’s Note: The derivation algorithm is FFS.
** End of changes 8 ******************************
*** Start of Changes 9 ********************************
6.2.2.2.3
Usage

Once the UE has been successfully authenticated by the AAuF, the UE has the necessary keying material to establish secure communication with any AApF. In order to do that, the UE derives the application key KAF using the AApF identifier (FQDN) and possibly other parameters and supplies its temporary identifier to the AApF. The AApF then retrieves the application key from the AAuF.

[image: image4.emf]UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, validity

time)

Response

Figure 6.2.2.2.3-1: Usage procedure

** End of changes 9 ******************************
*** Start of Changes 10 *******************************

6.3.2.2.1
Initiation

In order to be able to secure the communication using AKMA, the UE and the AApF must first agree on its use. The procedure for negotiating the use of AKMA is given in Figure 6.3.2.2.1-1. The procedure is initiated by the UE sending a Request message not including any AKMA parameters and concluded by the AAuF sending a required AKMA authentication message. This is based on the GBA initiation procedure described in cl 4.5.1 of TS 33.220 [2].

[image: image5.emf]UE AApF

Request

Authentication Required

Figure 6.3.2.2.1-1: Initiation procedure

** End of changes 10 *****************************
*** Start of Changes 11 *******************************

6.3.2.2.3
Usage

Once the UE has been successfully authenticated by the AAuF, the UE has the necessary keying material to establish secure communication with any AApF. In order to do that, the UE derives the application key KAF using the AApF identifier (FQDN) and possibly other parameters and supplies its temporary identifier to the AApF. The AApF then retrieves the application key from the AAuF.

[image: image6.emf]UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, validity

time)

Response

Figure 6.3.2.2.3-1: Usage procedure

** End of changes 11 *****************************
*** Start of Changes 12 *******************************

6.4.2.2
Authentication procedure for EAP-AKA'

[image: image7.emf]UE

Anchor

Function

AUSF UDM/ARPF

6. EAP Request / AKA′-Challenge

(RAND, AUTN)

4. Nudm_UEAuthentication_

Get Response

(EAP-AKA′ AV=RAND, AUTN,

XRES, CK', IK')

5. EAP Request / AKA′-Challenge

(RAND, AUTN

)

7. Verity AUTN, compute

RES

8. EAP Response / AKA′-Challenge

(RES)

10. AUSF checks the

given RES, if it is correct.

12. Response (EAP Success,

temporary identifier, key lifetime]

1. Request (user identity)

2. Nausf_UEAuthentication_

Authenticate Request

(user identity, Anchor Function

identifier)

3. Nudm_UEAuthentication_

Get Request

 (user identity, Anchor Function

identifier)

9. Auth-Req (RES)

11. Auth-Resp. (EAP Success,

K

AKMA

)

Figure 6.4.2.2-1: The bootstrapping authentication procedure for EAP-AKA'

The authentication procedure for EAP-AKA' works as follows, cf. also Figure 6.4.2.2-1.
The UE sends a request towards the Anchor Function.

2.
The Anchor Function shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, in which the user identity and Anchor Function identifier shall be included.

3.
The AUSF shall send a Nudm_UEAuthentication_Get Request to the UDM.

4.
The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF. The UDM/ARPF shall compute CK' and IK' from Anchor Function identifier.

5.
The AUSF shall send the EAP-Request/AKA'-Challenge message to the Anchor Function.

6.
The Anchor Function shall transparently forward the EAP-Request/AKA'-Challenge message to the UE.

7.
At receipt of the RAND and AUTN, the USIM shall verify AUTN and compute a response RES. The ME shall derive CK' and IK'.

8.
The UE shall send the EAP-Response/AKA'-Challenge message to the Anchor Function.

9.
The Anchor Function shall transparently forward the EAP-Response/AKA'-Challenge message to the AUSF.

10.
The AUSF shall verify the message, and if the AUSF has successfully verified this message it shall continue as follows, otherwise it shall return an error.

11.
The AUSF derives EMSK from CK’ and IK’. The AUSF uses the first 256 bits of EMSK as the KAUSF and then calculates Anchor Function key KAKMA from KAUSF and Anchor Function identifier. The AUSF shall send an EAP Success message to the Anchor Function inside Nausf_UEAuthentication_Authenticate Response, which shall forward it transparently to the UE. Nausf_UEAuthentication_Authenticate Response message contains the KAKMA.

12.
The Anchor Function shall calculate a temporary identifier to bind the subscriber identity to the keying material. The temporary identifier value shall be generated in format of NAI by taking the base64 encoded and the Anchor Function identifier, i.e. base64encode(RAND)@ Anchor Function identifier. The Anchor Function shall send the EAP Success message to the UE. This message shall also include the temporary identifier and the key lifetime of KAKMA.

** End of changes 12 *****************************
*** Start of Changes 13 *******************************

6.7.2
Solution details

Figure 6.7.2-1 illustrates a UE implementation scheme that both AKMA framework and application are on modem. AKA module is running on UICC to receive AUTN and RAND as input from ME and return RES and CK/IK as output. AKMA framework can derive session keys and subsequent application keys based on CK and IK obtained from AKA module. Applications on modem interfaces with AKMA framework to obtain an application authentication identifier. AKMA framework requests for CK and IK via APDU (Application Protocol Data Unit) packets according to ISO7816 [6] protocols. Besides, there could be other instructions, parameters like request/response, keys, identifiers, etc., transferred between AKMA framework and UICC.

[image: image8.emf]AKMA

APP1

AKA UICC

modem

Figure 6.7.2-1: UE implementation scheme-AKMA framework and application on modem
** End of changes 14 *****************************
*** Start of Changes 15 *******************************
6.13.1
Introduction
This solution addresses KI#1, KI#2, KI#3 and KI#4.

In GBA [2], the bootstrapping (i.e. authentication to get a fresh master key Ks) requires only IP connectivity between the UE and BSF. While that means that GBA is access independent it also means that UEs need to support an additional authentication mechanism to run the AKMA bootstrapping compared to the access authentication mechanism. In case a UE has 5G connectivity, over 3GPP or non-3GPP access, it would be useful if the UE could re-use the access authentication mechanism to run AKMA bootstrapping via the control plane.

The re-use of access authentication mechanism is not meant to run primary authentication for AKMA purposes as this would interfere with the serving network authentication policy and serving network keys. Instead, the intention is to re-use the access authentication mechanism (as much as possible) in order to perform an independent AKMA authentication run with the purpose to produce an AKMA anchor key in the UE and home network AKMA anchor function (AAuF). Therefore, this solution is also independent of the key hierarchy resulting from the primary authentication.

On high level this solution works in the following way:

-
UE sends an AKMA authentication request over NAS to AMF/SEAF.

-
The AMF/SEAF recognizes that the request is about AKMA authentication and finds the correct home network entity, AAuF, and sends an AKMA authentication request to AAuF.

-
AAuF contacts the UDM to get authentication vector for AKMA purposes.

-
UDM provides authentication vector for AAuF and indicates the authentication method.

-
AAuF performs 5G AKA or EAP-AKA’ for AKMA purposes with the UE via the AMF/SEAF. Authentication messages between the UE and AMF/SEAF are sent over NAS.

-
At the end of a successful AKMA authentication the UE and AAuF have a fresh AKMA anchor key KAKMA.
** End of changes 15 *****************************
*** Start of Changes 16 *******************************
6.13.2.2.1
Initiation

To be able to secure the communication using AKMA, the UE and the AApF must first agree on its use. The procedure for negotiating the use of AKMA is proposed in Figure 6.13.2.2.1-1. The procedure is initiated by the UE sending a Request message without including any AKMA parameters and concluded by the AAuF sending a required AKMA authentication message. This is based on the GBA initiation procedure described in clause 4.5.1 of TS 33.220 [2].

[image: image9.emf]UE AApF

Request

Authentication Required

Figure 6.13.2.2.1-1: Initiation procedure
** End of changes 16 *****************************
*** Start of Changes 17 *******************************

6.13.2.2.4
Usage

Once the UE has been successfully authenticated by the AAuF, the UE has the necessary keying material to establish secure communication with any AApF. In order to do that, the UE derives the application key KAF using the AApF identifier (FQDN) and possibly other parameters and supplies its temporary identifier to the AApF. The AApF then retrieves the application key from the AAuF.

[image: image10.emf]UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, validity

time)

Response

Figure 6.13.2.2.4-1: Usage procedure

** End of changes 17 *****************************
*** Start of Changes 18 *******************************

6.15.2.3
AKMA key refresh

A new primary authentication also derives a new AKMA key, but application keys can continue to exist (see key issue #12 Key lifetimes).

If the new authentication fails, the AKMA key shall be revoked (see separate key issue #14).

The solutions with sibling keys do not support re-fresh of KAKMA without a primary authentication. To solve this, it could be possible to use the other key hierarchy option and derive KAKMA from KAUSF. This way, the refresh of KAKMA might be possible by a separate procedure creating some freshness parameters to the derivation of KAKMA. This could be a sequence number held by the AKAF and or AUSF.

[image: image11.emf]AKAF AUSF

Key refresh request (seq. nr.)

Key Refresh Response(Ki)

AUSF derives a fresh K

AKMA

, Ki, from K

AUSF

and the seq nr.

Figure 6.15.2.3-1 AKMA key refresh

This refresh procedure is applicable regardless of which options is used for the primary authentication (EAP-AKA´ or 5G AKA).

The AKMA key also needs to be refreshed in the UE. This requires some synchronisation between the UE and the AKAF or between UE and AUSF. Alternatively, the synchronisation needs to rely on both entities having synchronised time and that they choose to refresh the AKMA key when its lifetime approached its end. In Figure 6.15.2.3-2 an alternative where key refresh is signalled from AKAF to UE is shown. How this signalling is to be made is TBD.

[image: image12.emf]AKAF AUSF

Key refresh request (seq. nr.)

Key Refresh Response(Ki)

UE

Key refresh request (seq. nr.)

AUSF derives a fresh K

AKMA

, Ki, from K

AUSF

and the seq nr.

UE derives a fresh K

AKMA

, Ki, from K

AUSF

 and

the seq nr.

Figure 6.15.2.3-2 Signal key refresh to UE

** End of changes 18 *****************************
*** Start of Changes 19 *******************************

6.16.2.1.1
AKMA Key Repository Service Serving Network Architecture Option

In order to support the functionality of established key usage, an AKMA Key Repository Service (AKRS) is included in the AKMA Architecture. In this version of the architecture, the AKRS connects to the SEAF. This architecture option is therefore called the 'Serving Network'-option. The AKRS has the following functionality:

-
Offering an interface to the AAuF to retrieve a KAKMA derived from KSEAF for AKMA purposes;

-
Storing the KSEAF
Note:
Storage of the KSEAF is offered in the SEAF already, so colocation of this service with the SEAF would reduce duplicate storage.

The service can be collocated with the AMF/SEAF but can also be run standalone. In this solution, collocation is assumed, and the service is referred to as AKRS.

The figure 6.16.2.1.1-1 below illustrates the proposed architecture.
 SHAPE * MERGEFORMAT

Figure 6.16.2.1.1-1 Architecture showing collocated AKRS and connections to the AauF
6.16.2.1.2
AKMA Key Repository Service Home Network Architecture Option

In order to support the functionality of established key usage, an AKMA Key Repository Service (AKRS) is included in the AKMA Architecture. This service has the following functionality:

-
Offering an interface to the AAuF to retrieve a KAKMA derived from KSEAF for AKMA purposes;

-
Storing the KAUSF or KSEAF
Note:
Storage of the KAUSF is offered in the AUSF already, so colocation of this service with the AUSF would reduce duplicate storage.

Note:
The KSEAF can be calculated from the KAUSF. As such, there is no need to store both the KSEAF and the KAUSF.

The service can be collocated with the AUSF but can also be run standalone. In this solution, collocation is assumed, and the service is referred to as AKRS.

The figure 6.16.2.1.2-1 below illustrates the proposed architecture.
 SHAPE * MERGEFORMAT

Figure 6.16.2.1.2-1 Architecture showing collocated AKRS and connections to the AAuF
6.16.2.2
AKMA Established Key Use Procedure

6.16.2.2.1
Procedure

This procedure takes the place of the "Authentication Procedure" in solution #2, clause 6.2.2.2.2 and takes place after an initiation procedure as detailed in 6.2.2.2.1.

The established key use procedure is initiated by the UE sending a request message to the AAuF including a key identifier (KI), and a flag indicating that the UE would like to use KSEAF for AKMA purposes. The AAuF verifies whether the use is allowed according to local policy and regulations and sends an "EstablishedKeyUseForAKMARequest" message to AKRS instance on the SEAF or AUSF.

Upon reception of the message, the SEAF or AUSF fetches the appropriate key from storage and calculates the AKMA Key as follows:
KAKMA = KDF (Input key, "AKMA", AKMA Counter),
Note:
If the instance on the AUSF fetches the KAUSF, it first needs to calculate the KSEAF before KAKMA can be calculated.

Where the Input key is or KSEAF and the AKMA counter is kept to avoid key repetition in case of multiple requests. Subsequently, the SEAF forwards the KAKMA and the value of the AKMA Counter to the AAuF together with a RAND and an XRES calculated from KAKMA and the RAND.

After reception of the key, the AAuF will authenticate the UE as follows by sending a message to the UE containing a flag indicating which key was used for calculation of KAKMA, the AKMA Counter, the random value RAND, and a MAC calculated as follows:

MAC = KDF (KAKMA, "AKMA MAC", RAND)

Upon reception of this message, the UE will calculate the KAKMA according to the key that was used, verify the MAC and if successful respond with a RES calculated from KAKMA and the RAND to the AAuF. The AAuF verifies that the RES is the same as the XRES and if so, replies with a service response including the temporary identifier and validity time.

The procedure is shown in figure 6.16.2.2.1-1

 SHAPE * MERGEFORMAT

Figure 6.16.2.2.1-1: Established Key Use procedure

As a result of the procedure the following has been achieved:
-
A KAKMA has been derived from KSEAF;

-
The UE and key anchor have authenticated each other using the newly derived KAKMA
** End of changes 19 *****************************
*** Start of Changes 20 *******************************

6.17.1
Introduction

This solution addresses Key Issues #1, #3, #4, #5. For key derivation for end-to-end security a solution is given that adds only a minimal amount of extra communication between the UE and the 3GPP network. The solution is based on the standard primary authentication and key agreement between UE and the 3GPP network as described in TS 33.501 [10]. In addition, it uses an enterprise key KEnterprise that is pre-shared between UE and AKMA Application Function (AApF) in order to derive an end-to-end encryption key KE2Eenc and an end-to-end integrity key KE2Eint. These two end-to-end keys may be used to protect the communication between the UE and the AApF. This is similar to the use of such keys as described in TS 33.163 [3].

6.17.2
Solution details

6.17.2.1
Architecture

The AKMA reference architecture assumed for this solution is as depicted in Figure 6.17.2.1-1. It assumes the existence of an AKMA Authentication Function (AAuF) connected to the SEAF and to the AUSF. Moreover, the AAuF has connections to one or more AKMA Application Functions (AApF). The UE has control plane connectivity to the AAuF via the SEAF and it has user plane connectivity to the AApF directly.

The solution assumes that the AAuF is only involved for AKMA enabled UEs, which is indicated to the SEAF by the inclusion of an AKMA specific information element (e.g. AApF ID). For non AKMA enabled UEs the standard primary authentication procedure applies.

The solution enables both EAP-AKA' or 5G AKA to be used as primary authentication procedure. For EAP-AKA' the following roles are assumed:

-
The UE takes the role of the peer.

-
The SEAF takes the role of pass-through authenticator.

-
The AAuF takes the role of pass-through authenticator.

-
The AUSF takes the role of the backend authentication server.

[image: image16.emf]5GC

UE

AAuF

AUSF

UDM/ARPF

SEAF

AApF

Figure 6.17.2.1-1: AKMA reference architecture

6.17.2.2
Procedures

6.17.2.2.1
Information flow

The information flows describing the solution are depicted in Figure 6.17.2.2.1-1, Figure 6.17.2.2.1-2, Figure 6.17.2.2.1-3, and Figure 6.17.2.2.1-3. The first diagram depicts the initiation of the primary authentication and key agreement procedure using the AKMA Authentication Function (AAuF) between SEAF and AUSF. The second and third diagram depict the authentication procedures for EAP-AKA' and 5G-AKA, respectively, using the AAuF between SEAF and AUSF. The fourth diagram depicts the calculation of the end-to-end encryption and integrity keys.

[image: image17.emf]SEAF

UE

AUSF

UDM/ARPF/

SIDF

<N1 message>

(SUCI or 5G-GUTI,

AApF ID)

Nudm_UEAuthentication_

Get Request

(SUCI or SUPI, SN name)

1. [SUCI to SUPI de-concealment]

2. Authentication Method Selection

Naauf_UEAuthentication_

Authenticate Request

(SUCI or SUPI, SN-name,

AApF ID)

AAuF

Nausf_UEAuthentication_

Authenticate Request

(SUCI or SUPI, SN-name)

Figure 6.17.2.2.1-1: Initiation of authentication and selection of authentication method with AKMA additions

The initiation of authentication and selection of authentication method with AKMA additions works as follows, cf. Figure 6.17.2.2.1-1:

The SEAF receives a message from the UE during a procedure establishing a signalling connection (over N1). In the message the UE shall use the SUCI or 5G-GUTI in the Registration Request. In addition, it also includes an AKMA Application Function ID (AApF ID). This information element indicates to the SEAF that it shall involve an AKMA Authentication Function (AAuF) and it informs the AAuF for which AApF the AKMA authentication needs to be provided.

The SEAF shall invoke the Naauf_UEAuthentication service by sending a Naauf_UEAuthentication_Authenticate Request message to the AAuF. The SEAF shall include either the SUCI or the SUPI according to TS 33.501 [10], the serving network name according to TS 33.501 [10], and the AApF ID received from the UE.

The AAuF shall invoke the Nausf_UEAuthentication service by sending a Nausf_UEAuthentication_Authenticate Request message to the AUSF, and include the SUCI, SUPI and/or SN-name according to TS 33.501 [10].

After performing the appropriate checks according to TS 33.501 [10], the AUSF invoke the Nudm_UEAuthentication_Get service by sending a Nudm_UEAuthentication_Get Request to the UDM/ARPF. This message shall include the SUCI, SUPI and/or serving network name according to TS 33.501 [10].

Upon reception of the Nudm_UEAuthentication_Get Request, the UDM shall invoke SIDF if a SUCI is received. SIDF shall de-conceal SUCI to gain SUPI before UDM can process the request.

Based on SUPI, the UDM/ARPF shall choose the authentication method, based on the subscription data.

[image: image18.emf]UE AAuF

AUSF UDM/ARPF

5. Authentication Request

(EAP Req/ AKA¶-Challenge,

ngKSI, ABBA)

2. Nudm_UEAuthentication_

Get Response

(EAP-AKA¶�AV, [SUPI])

3. Nausf_UEAuthentication_

Authenticate Response

 (EAP Req/ AKA¶-Challenge)

6. Verify AUTN,

 Compute Auth. Response

7. Authentication Response

(EAP Resp/ AKA¶-Challenge)

9. Nausf_UEAuthentication_

Authenticate Request

(EAP Resp/ AKA¶-Challenge)

10. Verify Response

12. Nausf_UEAuthentication_

Authenticate Response

(EAP Success, K

SEAF

, K

AKMA

,

[SUPI])

1. Generate AV

SEAF

4. Naauf_UEAuthentication_

Authenticate Response

(EAP Req/ AKA¶-Challenge)

8. Naauf_UEAuthentication_

Authenticate Request

(EAP Resp/ AKA¶-Challenge)

13. Naauf_UEAuthentication_

Authenticate Response

(EAP Success, K

SEAF

, [SUPI],

Temp ID)

14. <N1 message>

(EAP Success, ngKSI, ABBA,

Temp ID)

Figure 6.17.2.2.1-2: Authentication procedure for EAP-AKA' with AKMA additions

The authentication procedure for EAP-AKA' with AKMA additions works as follows, cf. Figure 6.17.2.2.1-2:

1. The UDM/ARPF shall first generate an authentication vector with Authentication Management Field (AMF) separation bit = 1 as defined in TS 33.102 [11]. The UDM/ARPF shall then compute CK' and IK' as per the normative Annex A of TS 33.501 [10] and replace CK and IK by CK' and IK'.

2. The UDM shall subsequently send this transformed authentication vector AV' (RAND, AUTN, XRES, CK', IK') to the AUSF from which it received the Nudm_UEAuthentication_Get Request together with an indication that the AV' is to be used for EAP-AKA' using a Nudm_UEAuthentication_Get Response message.

In case SUCI was included in the Nudm_UEAuthentication_Get Request, UDM will include the SUPI in the Nudm_UEAuthentication_Get Response.

3. The AUSF shall send the EAP-Request/AKA'-Challenge message to the AAuF in a Nausf_UEAuthentication_Authenticate Response message.

4. The AAuF shall transparently forward the EAP-Request/AKA'-Challenge message to the SEAF in a Naauf_UEAuthentication_Authenticate Response message.

5. The SEAF shall transparently forward the EAP-Request/AKA'-Challenge message to the UE in a NAS message Authentication Request message. The ME shall forward the RAND and AUTN received in EAP-Request/AKA'-Challenge message to the USIM. This message shall include the ngKSI and ABBA parameter. ngKSI will be used by the UE and AMF to identify the partial native security context that is created if the authentication is successful. The SEAF shall set the ABBA parameter as defined in Annex A.7.1 of TS 33.501 [10].

6. At receipt of the RAND and AUTN, the USIM shall verify the AUTN and the freshness of the AV' by checking whether AUTN can be accepted as described in TS 33.102 [11]. If so, the USIM computes a response RES. The USIM shall return RES, CK, IK to the ME. If the USIM computes a Kc (i.e. GPRS Kc) from CK and IK using conversion function c3 as described in TS 33.102 [11], and sends it to the ME, then the ME shall ignore such GPRS Kc and not store the GPRS Kc on USIM or in ME. The ME shall derive CK' and IK' according to Annex A.3 of TS 33.501 [10].

7. The UE shall send the EAP-Response/AKA'-Challenge message to the SEAF in a NAS message Authentication Response message.

8. The SEAF shall transparently forward the EAP-Response/AKA'-Challenge message to the AAuF in a Naauf_UEAuthentication_Authenticate Request message.

9. The AAuF shall transparently forward the EAP-Response/AKA'-Challenge message to the AUSF in a Nausf_UEAuthentication_Authenticate Request message.

10. The AUSF shall verify the message, and if the AUSF has successfully verified this message it shall continue as follows, otherwise it shall return an error to the SEAF via the AAuF. AUSF shall inform UDM about the authentication result (see sub-clause 6.1.4 of TS 33.501 [10] for details on linking authentication confirmation).

11. The AUSF and the UE may exchange EAP-Request/AKA'-Notification and EAP-Response /AKA'-Notification messages via the AAuF and SEAF. The AAuF and SEAF shall transparently forward these messages.

12. The AUSF derives EMSK from CK’ and IK’ as described in RFC 5448 [12] and Annex F of TS 33.501 [10]. The AUSF uses the most significant 256 bits of EMSK as the KAUSF and then calculates KSEAF from KAUSF as described in clause A.6 of TS 33.501 [10]. The AUSF shall also calculate KAKMA from KAUSF. The AUSF shall send an EAP Success message to the AAuF inside Nausf_UEAuthentication_Authenticate Response, which shall forward it transparently to the SEAF. Nausf_UEAuthentication_Authenticate Response message contains the KSEAF and KAKMA. If the AUSF received a SUCI from the SEAF when the authentication was initiated (see sub-clause 6.1.2 of TS 33.501 [10]), then the AUSF shall also include the SUPI in the Nausf_UEAuthentication_Authenticate Response message.

NOTE 1:
The use of the KAKMA for deriving further keys is explained later in this solution.

Editor’s note: the method for calculating KAKMA from KAUSF is FFS.

13. The SEAF shall transparently forward the EAP Success message to the SEAF in a Naauf_UEAuthentication_Authenticate Response message. The Naauf_UEAuthentication_Authenticate Response message contains the KSEAF. The Naauf_UEAuthentication_Authenticate Response message shall contain the SUPI if the SUPI was received in the Nausf_UEAuthentication_Authenticate Response message. The Nausf_UEAuthentication_Authenticate Response message shall also contain a temporary user identifier Temp ID. The Temp ID is used by the UE in the communication with AApF.

14.
The SEAF shall send the EAP Success message to the UE in the N1 message. This message shall also include the ngKSI and the ABBA parameter. The SEAF shall set the ABBA parameter as defined in Annex A.7.1 of TS 33.501 [10]. The message shall also contain Temp ID parameter received from the AAuF.

The key received in the Naauf_UEAuthentication_Authenticate Response message shall become the anchor key, KSEAF in the sense of the key hierarchy in sub-clause 6.2 of TS 33.501 [10]. The SEAF shall then derive the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7 of TS 33.501 [10] and send it to the AMF. On receiving the EAP-Success message, the UE derives EMSK from CK’ and IK’ as described in RFC 5448 [12] and Annex F of TS 33.501 [10]. The ME uses the most significant 256 bits of the EMSK as the KAUSF and then calculates KSEAF in the same way as the AUSF. The UE shall derive the KAMF from the KSEAF, the ABBA parameter and the SUPI according to Annex A.7 of TS 33.501 [10]. The UE shall also calculate the KAKMA from the KAUSF in the same way as the AUSF.

NOTE 2:
The use of the KAKMA for deriving further keys is explained later in this solution.

[image: image19.emf]UE AAuF

AUSF UDM/ARPF

6. Authentication Request

(RAND, AUTN)

2. Nudm_UEAuthentication_

Get Response

(5G HE AV, [SUPI])

4. Nausf_UEAuthentication_

Authenticate Response

 (5G SE AV)

7. Verify AUTN,

 Compute RES, RES*

8. Authentication Response

(RES*)

3. Store XRES*,

 Calculate HXRES*

11. Nausf_UEAuthentication_

Authenticate Request

(RES*)

12. RES* Verification

13. Nausf_UEAuthentication_

Authenticate Response

(Result, K

SEAF

, K

AKMA

, [SUPI])

1. Generate AV

SEAF

9. Calculate HRES*,

 Compare to HXRES*

5. Naauf_UEAuthentication_

Authenticate Response

(5G SE AV)

14. Naauf_UEAuthentication_

Authenticate Response

(Result, K

SEAF

, [SUPI],

Temp ID)

15. <N1 message>

(Temp ID)

Figure 6.17.2.2.1-3: Authentication procedure for 5G AKA with AKMA additions

The authentication procedure for 5G AKA with AKMA additions works as follows, cf. Figure 6.17.2.2.1-3:

1.
For each Nudm_Authenticate_Get Request, the UDM/ARPF shall create a 5G HE AV. The UDM/ARPF does this by generating an AV with the Authentication Management Field (AMF) separation bit set to "1" as defined in TS 33.102 [11]. The UDM/ARPF shall then derive KAUSF (as per Annex A.2 of TS 33.501 [10]) and calculate XRES* (as per Annex A.4 of TS 33.501 [10]). Finally, the UDM/ARPF shall create a 5G HE AV from RAND, AUTN, XRES*, and KAUSF.

2.
The UDM shall then return the 5G HE AV to the AUSF together with an indication that the 5G HE AV is to be used for 5G-AKA in a Nudm_UEAuthentication_Get Response. In case SUCI was included in the Nudm_UEAuthentication_Get Request, UDM will include the SUPI in the Nudm_UEAuthentication_Get Response.

3.
The AUSF shall store the XRES* temporarily. The AUSF shall compute the HXRES* from XRES* and KAnchor Function from KAUSF.

The AUSF shall then generate the 5G AV from the 5G HE AV received from the UDM/ARPF by computing the HXRES* from XRES* (according to Annex A.5 of TS 33.501 [10]) and KSEAF from KAUSF (according to Annex A.6 of TS 33.501 [10]), and replacing the XRES* with the HXRES* and KAUSF with KSEAF in the 5G HE AV. The AUSF shall also calculate KAKMA from KAUSF.

NOTE 3:
The use of the KAKMA for deriving further keys is explained later in this solution.

Editor’s note: the method for calculating KAKMA from KAUSF is FFS.

4.
The AUSF shall then create a 5G SE AV by removing the KSEAF and return the 5G SE AV (RAND, AUTN, HXRES*) to the AAuF in a Nausf_UEAuthentication_Authenticate Response message.

5.
The AAuF shall transparently forward the 5G SE AV to the SEAF in a Naauf_UEAuthentication_Authenticate Response message

6.
The SEAF shall send RAND, AUTN to the UE in a NAS message Authentication Request. This message shall also include the ngKSI that will be used by the UE and AMF to identify the KAMF and the partial native security context that is created if the authentication is successful. This message shall also include the ABBA parameter. The SEAF shall set the ABBA parameter as defined in Annex A.7.1 of TS 33.501 [10]. The ME shall forward the RAND and AUTN received in NAS message Authentication Request to the USIM.

7.
At receipt of the RAND and AUTN, the USIM shall verify the freshness of the 5G AV by checking whether AUTN can be accepted as described in TS 33.102 [11]. If so, the USIM computes a response RES. The USIM shall return RES, CK, IK to the ME. If the USIM computes a Kc (i.e. GPRS Kc) from CK and IK using conversion function c3 as described in TS 33.102 [11], and sends it to the ME, then the ME shall ignore such GPRS Kc and not store the GPRS Kc on USIM or in ME. The ME then shall compute RES* from RES according to Annex A.4 of TS 33.501 [10]. The ME shall calculate KAUSF from CK||IK according to clause A.2 of TS 33.501 [10]. The ME shall calculate KSEAF from KAUSF according to clause A.6 of TS 33.501 [10]. An ME accessing 5G shall check during authentication that the "separation bit" in the AMF field of AUTN is set to 1. The "separation bit" is bit 0 of the AMF field of AUTN. The ME shall also calculate the KAKMA from KAUSF in the same way as the AUSF.

NOTE 4:
The use of the KAKMA for deriving further keys is explained later in this solution.

8.
The UE shall return RES* to the SEAF in a NAS message Authentication Response.

9.
The SEAF shall then compute HRES* from RES* according to Annex A.5 of TS 33.501 [10], and the SEAF shall compare HRES* and HXRES*. If they coincide, the SEAF shall consider the authentication successful from the serving network point of view. If not, the SEAF proceed as described in sub-clause 6.1.3.2.2 of TS 33.501 [10]. If the UE is not reached, and the RES* is never received by the SEAF, the SEAF shall consider authentication as failed, and indicate a failure to the AUSF via the AAuF.

10.
The SEAF shall send RES*, as received from the UE, in a Naauf_UEAuthentication_Authenticate Request message to the AAuF.

11.
The AAuF shall transparently forward the RES*, as received from SEAF, to the AUSF in a Nausf_UEAuthentication_Authenticate Request message.

12.
When the AUSF receives as authentication confirmation the Nausf_UEAuthentication_Authenticate Request message including a RES* it may verify whether the AV has expired. If the AV has expired, the AUSF may consider the authentication as unsuccessful from the home network point of view. AUSF shall compare the received RES* with the stored XRES*. If the RES* and XRES* are equal, the AUSF shall consider the authentication as successful from the home network point of view. AUSF shall inform UDM about the authentication result (see sub-clause 6.1.4 of TS 33.501 [10] for linking with the authentication confirmation).

13.
The AUSF shall indicate to the AAuF in the Nausf_UEAuthentication_Authenticate Response whether the authentication was successful or not from the home network point of view. If the authentication was successful, the KSEAF shall be sent to the SEAF in the Nausf_UEAuthentication_Authenticate Response. In case the AUSF received a SUCI from the SEAF in the authentication request (see sub-clause 6.1.2 of TS 33.501 [10]), and if the authentication was successful, then the AUSF shall also include the SUPI in the Nausf_UEAuthentication_Authenticate Response message. The AUSF shall also include the KAKMA in the Nausf_UEAuthentication_Authenticate Response.

14.
The AAuF shall forward the Nausf_UEAuthentication_Authenticate Request message, as received from SEAF, to the SEAF in a Naauf_UEAuthentication_Authenticate Request message. The Naauf_UEAuthentication_Authenticate Request message shall not contain the KAKMA and it shall contain a temporary user identifier Temp ID. The Temp ID is used by the UE in the communication with AApF.

15. The SEAF shall send the Temp ID in a NAS message to the UE.

NOTE 5:
Step 15 could be NAS Security Mode Command.

The authentication procedure for EAP-AKA' and 5G AKA are similar to the primary authentication and key agreement procedures described in TS 33.501 [10], with the following differences:

· An AKMA Authentication Function (AAuF) is used between SEAF and AUSF.

· The UE includes an AKMA Application Function ID (AApF ID) in the initial request, cf. Figure 6.17.2.2.1-1. The AApF ID is used on the one hand to indicate to the SEAF that an AAuF needs to be involved in the authentication, and on the other hand it provides the AAuF information about the AApF for which the KAF needs to be derived.

· The AUSF shall derive/calculate a KAKMA and include this in the communication to the AAuF.

· The SEAF shall forward the Temp ID, that it receives from the AAuF, to the UE.

[image: image20.emf]UE AAuF

2. Calculate K

AF

4. Calculate K

E2Eint

,

K

E2Eenc

AApF

3. AApF Session Request

(K

AF

, Temp ID)

6. AApF Session Start

5. Calculate K

E2Eenc

,

K

E2Eint

SEAF

1. Calculate K

AF

Figure 6.17.2.2.1-4: Calculation of the end-to-end encryption and integrity keys
The calculation of the end-to-end encryption and integrity keys works as follows, cf. Figure 6.17.2.2.1-4:

1.
The UE calculates the KAF from KAKMA depending on the AApF ID used in the authentication described before. The UE associates the KAF with the Temp ID received during the authentication.

Editor’s note: the method for calculating KAF from KAKMA is FFS.

2.
The AAuF calculates the KAF from KAKMA depending on the AApF ID received in the authentication described before. The AAuF is associated the KAF with the Temp ID used in the authentication.

Editor’s note: the method for calculating KAF from KAKMA is FFS.

3.
The AAuF sends the KAF and associated Temp ID to the appropriate AApF (corresponding to the AApF ID received during the authentication).

4.
The UE calculates the KE2Eint and KE2Eenc from the corresponding KAF and the pre-shared KEnterprise according to the key hierarchy described in clause 6.17.2.2.2. These keys are associated with the Temp ID used in the authentication.

5.
The AApF calculates the KE2Eint and KE2Eenc from the corresponding KAF and the pre-shared KEnterprise according to the key hierarchy described in clause 6.17.2.2.2. These keys are associated with the Temp ID used in the authentication.

6.
The AApF may optionally send a response to the received message from the AAuF.

** End of changes 20 *****************************
*** Start of Changes 21 *******************************

6.18.2
Solution details
Once the UE has been successfully authenticated, the UE has necessary keying material to establish secure communication with any AKMA application function. The key separation for a UE between any AKMA application function is supported using a 16-bit AKMA Application Function Counter (AF Counter). The UE and the AKMA authentication function (either AAuF or AUSF) initialize the AF Counter to ‘0’ whenever an AKMA anchor key (KAKMA) is generated for a UE based on a 3GPP credential in 5G. The AF counter can be monotonically incremented for every new application key (KAF) generation and used as an input during KAF generation from the same KAKMA. To derive the application key the UE increments the locally stored AF counter and verify if it matches with the AF counter received from the AKMA application function. If the verification is successful, the UE generates the application key using the received AF Counter and the other AKMA parameters. The AF counter specific to the UE is managed by both the UE and the AKMA authentication function. The AKMA application key is derived as follows.

KAF = KDF (KAKMA, AApF ID, AF Counter)

where AApF ID is the AKMA Application Function Identifier.

It is recommended that application functions receiving the key do not use the key directly, but rather derive a further, e.g. protocol specific, key for separate sessions. Direct usage of the key in a weak security protocol may expose the key and compromise further use of the same key. For example, protocol specific key may be derived as follows:

KAF_Prot = KDF (KAF, Protocol Identity)

where Protocol Identity is an identity that indicates the specific protocol for different applications.

Figure 6.18.2-1 illustrates the proposed key separation mechanism.

[image: image21.emf]UE AApF

Request (Temporary

identifier)

AAuF

Application Request

(Temporary identifier,

AApF identifier)

Authentication

Response(K

AF

, AF

Counter, validity time)

Response

AF Counter

Increment AF Counter

and generates K

AF

Increment and verify

AF Counter

Generate K

AF

Figure 6.18.2-1: Key separation procedure

6.18.3
Evaluation
This solution covers the requirement of key issue #9, namely "The AKMA architecture shall support key separation for different AKMA AFs." It does so by introducing an application key (KAF) derived from KAKMA by including the AApF ID for separation and a counter for freshness as input parameters to guarantee key separation and freshness.

The context of this solution is limited to those cases where a pre-shared key is available in the UE and the AAuF. In this solution, it is assumed that this pre-shared key is KAKMA.

The advantage of this solution is that in addition to key separation, freshness is also provided by using a unique counter. A drawback is that the AAuF will have to maintain a counter. Therefore, the system impact is that the AAuF will be required to maintain a counter in order to make this solution work. Also, counter synchronization errors may occur, which are not detailed in this solution.

** End of changes 21 *****************************
*** Start of Changes 22 *******************************

6.19
Solution #19: Reusing KAUSF for AKMA

6.19.1
Introduction
This solution addresses KI#1, KI#2, KI#3, KI#4 and KI#5.

6.19.2
Solution details
This solution introduces two new functions to 5GC:

· AKMA Authentication Function (AAuF)

· AKMA Application Function (AApF)

[image: image22.emf]UE

AApF

5GC

UDM

AUSF

SEAF

AAuF

Ua*

SBI

Figure 6.19.2-1: AKMA Architecture that reuses KAUSF
In this solution, no separate authentication is performed to support AKMA functionality. Instead, it reuses the 5G primary authentication for AKMA purposes. Therefore, it is assumed that the UE had successfully registered to the 5G core before invoking AKMA services. A successful 5G primary authentication results in KAUSF being stored at the AUSF and the UE.

The KAUSF is used for the following AKMA purposes:

1. Deriving a KAUSF key identifier from KAUSF at the UE and the AUSF. The KAUSF key identifier is stored by the AUSF along with the KAUSF. The derived key identifier is transported from the UE in NAI format to the AApF where the “username” part of the NAI includes the UE’s KAUSF key identifier and the “realm” part is set to home network identifier identifying the AUSF in the home network that holds KAUSF. If the AApF does not have context associated with the key identifier, then the AApF sends a request to AAuF with the key identifier to request AKMA keys for the UE. The KAUSF key identifier is equivalent to the B-TID in GBA and identifies the KAUSF key of the UE from which other AKMA keys are derived.

2. Deriving a key KAKMA at the UE and the AUSF. The AUSF sends KAKMA to the AAuF. KAKMA is equivalent to key Ks for GBA in TS 33.220)

Both the AAuF and the UE use KAKMA to derive application specific keys needed for AKMA Application Functions (AApFs) in similar manner as for NAFs in GBA. This implies that existing GBA-based Ua protocols can be mostly reused (with necessary adaptations) by the UE and the AApF with AKMA and is denoted as Ua* interface.

Editor’s Note: Derivation of AKMA specific keys and the key identifier are FFS.

In this solution, the AKMA keys can only be refreshed by running a fresh primary authentication. This means that the AKMA key lifetime(s) cannot be shorter than the time interval between primary authentications.

Editor’s Note: It is FFS whether there is a need to refresh AKMA keys more often than the 5G primary authentication.

** End of changes 22 *****************************
*** Start of Changes 23 *******************************

6.20.2.2
Option 2 – Reuse of ngKSI

Editor’s Note: The impacts of using ngKSI for key identification is FFS.

In this option, the existing ngKSI is reused. To do so, the AUSF has to receive the ngKSI that is communicated to the UE. This can be achieved as follows:

EAP AKA'

After the SEAF has received the RES from the UE, the SEAF forwards the RES in a Nausf_Authentication Authenticate Request message. In this message, the SEAF also includes the ngKSI

The AUSF then stores the ngKSI together with the KAUSF.

5G AKA

After the SEAF has received the RES* from the UE, the SEAF forwards the RES* in a Nausf_Authentication Authenticate Request message. In this message, the SEAF also includes the ngKSI

The AUSF then stores the ngKSI together with the KAUSF.

Binding of the ngKSI to KSEAF
In order to make sure that both the UE and the AUSF have the same ngKSI, the calculation of the KSEAF is changed as follows to also include the ngKSI.:

KSEAF = KDF (KAUSF, Serving network name, ngKSI)

Using the key

In order to use the key, the procedure is as follows:
1)
Whenever the UE starts an initiation procedure for AKMA, the UE will retrieve the ngKSI corresponding to the latest KAUSF from memory. The UE will then send a service request according to solution 2 to the AKMA server including the ngKIS of the KAUSF.

2)
The AKMA server / AUSF looks up the key based on the ngKSI received (and UE identity if included) and if found uses this key for further procedures with the UE. If no key was found, the AUSF will either:

-
Fall back to solution #2 and run an authentication; or

-
Return an error message with another ngKSI that the AUSF has in memory for the UE.

3)
Upon reception of the response the UE will either:

-
Perform the authentication according to solution #2; or

-
Retrieve the KAUSF that corresponds to the ngKSI received or if not found, return an error message.

** End of changes 23 *****************************
*** Start of Changes 24 *******************************

6.21.2.1
Generic procedure

This generic procedure for solution works as follows:
1)
The UE initiates an initiation procedure by contacting an AAuP according to clause 6.2.2.2.1. The AAuP responds signalling AKMA compatibility. Upon reception of the trigger, the UE initiates an AKMA Established Key Use Procedure by sending a service request to the AAuF including the UE Identity and the UE’s preference for which key to use.

2)
Upon reception of the service request, the AAuF decides whether the KAKMA should be derived from KSEAF or KAUSF and sends a request for a KAKMA based on a particular key to the AKRS.

3)
The AKRS generates the KAKMA and sends the key together with a random and an XRES to the AAuF.

4)
The AAuF authenticates the UE, and if successful sends the UE the necessary information for AKMA (which key was used as a base for KAKMA, the temporary identity, and the validity timer).

The procedure is shown in the figure 6.21.2.1-1 below:

 SHAPE * MERGEFORMAT

Figure 6.21.2.1-1: Generic procedure

Each of the options differs in how the decision on which key to use is taken. Depending on the decisions and access to keys, KAKMA will be derived in one of the following ways:

1)
KAKMA = KDF(KAUSF, …)

2)
KAKMA = KDF(KDF(KAUSF, Serving Network Name) , …)

3)
KAKMA = KDF(KSEAF, …)

** End of changes 24 *****************************
*** Start of Changes 25 *******************************

6.21.2.4
Combined Option

In this option, it is assumed that there is an AAuF is connected to the AKRS in the home network and one connected to the AKRS in the serving network. For this solution it is not relevant whether this is implemented using a push mechanism according to solution #15 or a pull mechanism according to solution #16. It is assumed that the AAuF in the serving network can take the role of a proxy for the AAuF in the home network.

In this case, the Home AAuF can choose between using a KAKMA based on KAUSF directly or based on KSEAF. The AAuF can decide based on criteria like:

1)
Whether the UE is roaming and where;

2)
Whether the service is located in the country where the UE is roaming / serving network;

3)
Whether there is a network element in the serving network that can receive the derived key;

4)
Local configuration.

6.21.3
Evaluation

In the serving network option, the authentication is performed between the UE and the serving network without involving the home network. Consequently, the home network has no control over the authentication, which may pose problems with charging and liability. Therefore, this option is not preferred.

In the home network option, an authentication is performed between the UE and the home network based on KSEAF or KAUSF. If the KSEAF is used, the serving network could pose as the AUSF because the serving network knows the KSEAF. Also, this condition leads to a situation of loss of home network control over the authentication. The solution lacks a mitigating measure for this attack. Therefore, this option is not preferred either.

Editor's Note: Further evaluation is for further study.

** End of changes 24 *****************************
*** Start of Changes 25 *******************************

6.22.2
Solution details

Once the UE has been successfully authenticated by the Anchor Function, the UE has the necessary keying material to establish secure communication with any AKMA AF. Once the UE and the NAF have established that they want to use AKMA then every time the UE wants to interact with a NAF the following steps are executed as depicted in Figure 6.22.2-1.

[image: image24.emf]UE AKMA AF

Anchor Function

1. Application request

(Temporary identifier)

5. The servrer stores

K

AF

 and K

AF

 lifetime

6. Application Answer

(Nonce, K

AF

 lifetime, MAC)

7. Derive K

AF

2. Authentication request

(Temporary identifier,

AKMA AF identifier)

4. Authentication Answer

(K

AF

, K

AF

 lifetime, Nonce)

3. Derive K

AF

Temporary

identifier,

K

AKMA

Figure 6.22.2-1: Usage procedure

 Editor’s Note: How application keys are generated for different applications is FFS.
1.
The UE starts communication with AKMA AF. The UE supplies the temporary identifier to the AKMA AF. The temporary identifier is generated in the procedure of bootstrapping authentication of AKMA and used to bind the subscriber identity to the keying material.
2.
The AKMA AF checks if the KAF lifetime is expired, if so the AKMA AF requests key material corresponding to the temporary identifier supplied by the UE. The AKMA AF supplies the temporary identifier and AKMA AF identifier to the Anchor Function.

3.
The Anchor Function checks the lifetime of KAKMA. If the KAKMA is expired or the remaining lifetime of KAKMA shorter than the lifetime of KAF going to generated, the Anchor Function shall trigger to renegotiate a new KAKMA. Otherwise, Anchor Function derives the key KAF from the key KAKMA.

Editor’s Note: the way to derive the new KAF is FFS.

4.
The Anchor Function supplies to AKMA AF the requested key KAF, as well as the lifetime of KAF.

5.
The Anchor Function stores the key KAF and lifetime of KAF.

6. The AKMA AF supplies the lifetime of KAF to the UE. The AKMA AF calculates a MAC using KAF to protect the integrity of the message.

7. The UE derives the key KAF from the key KAKMA. Then the UE checks the MAC using KAF.
** End of changes 25 *****************************
*** Start of Changes 26 *******************************

6.23.2.2
Procedures

[image: image25.emf]AUSF NEF

AKMA Application

Function

UE

AMF

2. Application session establishment request

(AKMA Key Identifier)

1. UE

generates K-

AKMA, Key

Identifier

4b. AKMA Key Response

(K-AKMA)

5. Derive

AApF specific

key from K-

AKMA

7. Application Session Establishment Response

(AApF key is used as pre-shared key)

Primary authentication

1. AUSF generates

K-AKMA, Key

Identifier

4a. AKMA Key Request

(AKMA Key Id)

2. Derive

AApF specific

key from K-

AKMA

6. Key Response

(AApF key, key lifetime..)

Is AApF key

available?

Figure 6.23.2.2-1 Implicit bootstrapping of AApF using NEF as the AKMA Anchor Function

1. At the end of the primary authentication run, the UE and the AUSF generate the AKMA Anchor Key (KAKMA) and the associated Key Identifier from KAUSF.

2. The UE starts communication with the AApF with a session establishment request.

The UE derives AApF specific key from KAKMA before it begins communicating with the application function. It includes AKMA Key Identifier, AApF Identifier. in the request.

NOTE: AApF Id may be its public hostname that the UE has used to access AApF.

Editor’s Note: Whether additional information regarding the AF is required for deriving AF specific key is FFS.

3-4. The AApF checks if it has the necessary pre-shared key for the requesting UE. If not, it’ll invoke the Key Request API to obtain AApF specific key from the NEF.

The AApF includes the key identifier, and its own Id in the API Request.

5-6. The NEF generates AApF specific key from KAKMA and responds back to AApF with the AApF key and its lifetime.

Editor’s Note: Derivation of KAKMA and associated Key Identifier, and AApF specific key are FFS

Since AKMA keys are based on KAUSF from primary authentication run, the AKMA keys can only be refreshed by running a fresh primary authentication. This implies that the AKMA key lifetime(s) are higher than the time interval between primary authentication runs.

** End of changes 26 *****************************
*** Start of Changes 27 *******************************

6.24.2
Solution details
6.24.2.1
Architecture and reference points
The AKMA push architecture includes Network Functions:

· The AKMA Authentication Function (AAuF), and

· The AKMA Application Function (AApF).

The AAuF is the authentication anchor that performs the UE authentication service. In the AKMA push, AAuF is responsible for retrieving the security context from the AUSF, and AKMA push information (AKMA-PI) generation.

The AAuF interacts with the AUSF and the AApF using Service-Based Interfaces.

The AApF is the application function that provides service for the UE. The AApF interacts with the AAuF to retrieve the push information from the AAuF and establishes the security association with the UE based on the AKMA push.

The AApF interacts with the UE using the interface Ap1, which is dedicated for the push information and message transmission.

[image: image26.emf]UDM

AUSF

SEAF

AAuF AApF

UE

Ap1

SBI A1

5GC

Figure 6.24.2.1-1: AKMA reference architecture

** End of changes 27 *****************************
*** Start of Changes 28 *******************************

6.24.2.2.1
Initiation

The high level of this solution is proposed as follows:

· AApF sends an AKMA push request to the AAuF for the AKMA-PI

· AAuF asks the AUSF for the AAuF key, then generates and sends the AKMA-PI to the AAPF

· AApF sends the AKMA push message to the UE, to establish the AKMA SA between them.

[image: image27.emf]UE

AUSF AAuF AApF

1. AKMA push request (

identity of

the subscriber

)

2. AKMA Security context

request

3. AAuF key generation

6. AKMA push

response (AApF key,

AKMA-PI)

8. AKMA push

5. AApF key generation,

AKMA-PI generation

9. AKMA SA storage

4. AKMA Security context

response

7. AKMA SA storage

10. push message

Figure 6.24.2.2.1-1: Initiation procedure

A precondition for use of AKMA Push is that the UE is registered with the AApF for the intended service. The AApF knows the identity of the subscriber.

Processing and message flow:

1.
The AApF sends the AKMA push request to the AAuF, including the AApF ID, identity of the subscriber, e.g., 5G-GUTI, or SUCI.

Editor’s Note: Which user identity will be used is FFS

2.
Upon receiving the request from the AApF, the AAuF send the AKMA security context request to the AUSF including the identifier of the subscriber, and AAuF ID.

3.
Upon receiving the AKMA security request from the AAuF, AUSF generates the AKMA key Kaauf with the following cases:

Case A: If the identity of the subscriber is the 5G-GUTI, AUSF retrieve the SUPI from the AMF, which is identified by the 5G-GUTI. AUSF obtains the key Kausf based the SUPI, then generates the Kaauf based on the Kausf and AAuF ID.

Case B: If the identity of the subscriber is the SUCI, AUSF sends the SUCI to the UDM. The UDM obtains the SUPI by invoking the SIDF. UDM/ARPF shall choose the authentication method and generate the authentication vector, based on the subscription data of the SUPI. Then AUSF obtains the Kausf, then generates the Kaauf based on the Kausf and AAuF ID.

4. For Case A, the AUSF sends the Kaauf to the AAuF. For Case B, the AUSF sends the RAND and AUTN of EAP-AKA’ AV or 5G HE AV, the authentication method indicator and Kaauf to the AAuF. The detail of EAP-AKA’ AV and 5G HE AV refers to TS 33.501 clause 6.1. The authentication method indicator here indicates which authentication method is chosen for AKMA-PI.

5. The AAuF generates the requested AApF key Kaapf according to the provided AApF ID and Kaauf. AAuF generates the AKMA-PI with the following cases. Here AKMA-PI also includes a context indicator indicating whether the existing security context is used or not and includes an authentication method indicator.

Case A: AAuF randomly select a random number, RAND, and generates the MAC using the RAND and Kausf. Then AAuF generates the AKMA-PI similar as the GBA PI generation specified in 33.223 [13], using the RAND and MAC, where the MAC is here used instead of the AUTN.

Case B: AAuF generates the AKMA-PI similar as the GBA PI generation specified in 33.223 [13].

6.
The AAuF sends the AKMA-PI, and AApF key to the AApF.

7. The AApF stores the received information together with other user information in an AKMA SA. The AKMA SA include the AApF key, identifier of the user, etc. details of AKMA SA is the same as NAF SA defined in 33.223 [13].
9.
The AApF then forwards the AKMA-PI to the UE over Ap1 using the selected transport mechanism and the given transport address.

10.
The UE receives the message containing the AKMA-PI.

If the context indicator indicates the existing the security context is used for AKMA-PI, the UE first finds out the Kausf, then generates the Kausf, and verifies the MAC.

Otherwise, the UE verifies the RAND and AUTN based on the authentication method indicated by the authentication method indicator.

If the MAC, or the RAND and AUTN is successfully verified, the following procedure is the same as 33.223 [13]. The UE stores the AKMA SA.

The UE and NAF are now ready to use the established AKMA SA.

** End of changes 28 *****************************
5GC

UDM

AUSF

SEAF�AKRS

AAuF

SBI

UE

a1

AAuP

a2

5GC

UDM

AUSF�AKRS

SEAF�

AAuF

SBI

UE

a1

AAuP

a2

UE

AAuF

AUSF

Service request (SUCI/SUPI, Key Flag)

Established Key Use request (UE ID)

Decide whether key reusage is allowed

Fetch key from storage, derive KAKMA

Key Use response (KAKMA, RAND, XRES)

Service response (Key, Flag RAND, MAC)

Verify MAC, calculate RES

Response (RES)

Verify RES

Service response (Temp ID, validity timer)

UE

AAuF

AKRS

Service request (SUCI/SUPI, Key Flag)

Established Key Use request (UE ID, Key Flag)

Decide whether key reusage is allowed

Fetch key from storage, derive KAKMA

Key Use response (KAKMA, RAND, XRES)

Authentication�Temporary ID and validity timer exchange

