3GPP TSG-SA WG3 Meeting #96 Ad-hoc
S3-193595
Chongqing (China), 14-18 October 2019

 revision of S3-19xabc
Source:
Ericsson
Title:
Solution Key lifetimes
Document for:
Approval
Agenda Item:
5.2.2
1
Decision/action requested

It is proposed to approve the proposed solution for inclusion in TR 33.835 [1].
2
References

[1]
3GPP TR 33.835, Study on authentication and key management for applications; based on 3GPP credential in 5G, v 1.0.1
3
Rationale

This contribution proposes a solution for key lifetimes to be added to TR 33.835 [1].
4
Detailed proposal

It is proposed to approve the changes below for inclusion in TR 33.835 [1].

BEGIN CHANGES

6.X Solution #X: Key lifetimes
6.X.1
Introduction
This solution addresses the Key issue #12.
6.X.2
Solution details
6.X.2.1
KAKMA lifetime
As concluded in clause 7.1 of this document, the KAKMA will be derived from KAUSF (implicit bootstrapping). Since KAUSF does not have a lifetime, the KAKMA will not automatically inherit a lifetime.
There are some options for the anchor key (KAKMA) lifetimes:

1. Implicit lifetime: The KAKMA will be valid until the next primary authentication is performed, in which case the KAKMA is replaced after a successful new authentication or removed after an unsuccessful one.

a. A revocation procedure might be needed, that revokes the current KAKMA key and its derived application keys upon an unsuccessful re-authentication.

b. An explicit key refresh procedure is not needed in this case.
2. Explicit lifetime: A life time is specified for the KAKMA based on some configuration parameter. The following needs consideration:

a. A refresh procedure is needed in order to get a fresh KAKMA based on the same KAUSF in case the KAKMA lifetime runs out before a new primary authentication is run.
b. A policy is needed to handle the case where a new primary authentication is performed within that lifetime of a KAKMA. In such a case, shall the current KAKMA be replaced or shall it remain until its lifetime expires (provided that the new authentication is successful)?
c. A revocation procedure might be needed, that revokes the current KAKMA key and its derived application keys upon an unsuccessful re-authentication.
To avoid the need for a refresh procedure for anchor keys, it is proposed that the implicit lifetime is used for KAKMA. This is also in line with how the other anchor key based on KAUSF, KSEAF, is handled.

6.X.2.2
Application key lifetime
For application keys, the same options for key lifetimes are available. The consequences are however different:

· Implicit lifetime The KAF will be valid until a new anchor key (KAKMA) is derived in which case all application keys are replaced.

a. Since the generation of application keys in not initialized by the anchor function, this implies some signalling is needed from the Anchor function to the Application server and/or UE (or within the UE) when there is a new anchor key.

· Explicit lifetime A lifetime is specified for the KAF based on some configuration parameter or operator policy. The following needs consideration:

a. A refresh procedure is needed in order to get a fresh KAF based on the same KAKMA in case the KAF lifetime runs out before a new KAKMA is derived (unless they both have explicit and equal lifetimes)
b. There is a requirement stating that the lifetime of an application key shall not exceed the lifetime of the anchor key.

i. But if the anchor key has implicit lifetime, there is need for some signalling from the Anchor function to the Application function to avoid that a child key is used after the parent key is has been replaced.

ii. The signalling above can be avoided if we instead let the application key continue to be used until its lifetime runs out. This would contradict the requirement above but provide a smoother solution.

It's proposed that explicit lifetimes are used for application keys to avoid the extra signalling mentioned above for implicit lifetimes.

It is proposed that application keys can continue to be used until their lifetimes expire even when there is a new anchor key established. When the application key lifetime expires, a new application key is established using the new anchor key. As mentioned above, this property does not meet the requirement that states that the lifetime of the derived sub-keys shall not exceed the lifetime of the anchor key. However, since there is no explicit lifetime of the anchor key there is no strict security need to change the application key when the anchor key is changed.
A separate application key refresh procedure is needed but not provided by this solution since the study includes several potential solutions (e.g. solution #22) for application key refresh.
If a new primary authentication is performed that does not result in a new anchor key, the application keys might need to be revoked. A potential solution for key revocation that could be used for this solution is Solution #14.
6.X.3
Evaluation
This solution addresses key issue #12. The key issue has the following requirements:

1. Both anchor keys and derived sub-keys shall be provided with a maximum lifetime.

2. The lifetime of the derived sub-keys shall not exceed the lifetime of the anchor key.

3. Either end on AKMA interfaces shall allow for renegotiation of keys when key lifetime is expired
Requirement #1 is fulfilled by letting the anchor key having an implicit lifetime and the application keys an explicit lifetime.

To avoid extra signalling when an anchor key is replaced, application key can still be used until the explicit lifetime expires. Thus, the requirement #2 is not addressed. However, since there is no explicit lifetime of the anchor key there is no strict security need to change the application key when the anchor key is changed
Requirement #3 is not applicable for anchor keys with implicit lifetimes, only for application keys. A solution for application key refresh is provided in solution #22.
A procedure for revocation of anchor key and application keys is needed in case a renewed primary authentication fails. A solution for key revocation is provided in solution #14.

END OF CHANGES
