3GPP TSG-SA WG3 Meeting #96 adhoc
S3-193589
14-18 October 2019, Chongqing (China)
revision of S3-19xabc
Source:
China Mobile
Title:
Editorial Changes to TR 33.835
Document for:
Approval
Agenda Item:
5.2.2
1
Decision/action requested

SA3 is kindly requested to approve the following editorial changes to TR 33.835.
2
References

[1]
3GPP TR 33.835: “Study on authentication and key management for applications based on 3GPP credential in 5G”
3
Rationale

This document is to address several editorial mistakes in TR 33.835. Besides, according to the discussions during previous meetings, scenario section is not needed in this TR, thus it’s proposed to put ‘Void’ in section 4.
4
Detailed proposal

*************** Start of 1st Change ****************
4
Scenario

Void
*************** End of 1st Change ****************
*************** Start of 2nd Change ****************
5.6
Key Issue #6: Secure communication between UE and application server
5.6.1
Issue details
In current BEST[3] and GBA[2] solutions, 3GPP network is responsible to derive keys from the root subscriber authentication key K (e.g., KE2Menc, KE2Mint , Ks_(int/ext)_NAF) for UE and application server. However, the application server may not want to use the key derived from the 3GPP network authentication key K. The application server may have a policy requiring the use of its own independently generated key (e.g., application specific key), but still require the use of features provided by the 3GPP network to distribute such a key. The proposed mechanism can satisfy the demand of application providers who do not wish to establish the secure connection by using only a 3GPP credential.
In some scenarios, such as when the UE sends sensitive data to application server, the application security policy may require that the 3GPP network operator does not have accesses to that data. In addition, the services provided by the application server may be accessed by multiple applications. Therefore, it is desirable that a solution that addresses this key issue supports establishment of separate application specific keys for each application that are served by the application server.

*************** End of 2nd Change ****************
*************** Start of 3rd Change ****************
6.16
Solution #16: Use of KSEAF as root key for KAKMA
6.16.1
Introduction
This solution addresses key issue #10 by proposing an architecture that allows for using KSEAF as AKMA root key. In addition, it supports key issue #1 by proposing a logical connection between the SEAF and the anchor function introduced in solutions #2 and #3.

In order to fulfil key issue #10, this solution introduces to use KSEAF by introducing a generic architecture where the AAuF communicates with a key repository service (AKMA Key Repository Service – AKRS) that provides services to store a key together with an identifier and to retrieve (derivations) of the stored key upon request. In this solution, the AKRS is a service offered of the SEAF/AMF or the AUSF even though technically, the ARKS could also be a standalone function. This does not change the solution.

In order to enable using KSEAF for AKMA, this solution proposes to include an information element in the AKMA service request message that indicates which key the UE prefers to use and to include an information element in the AKMA service response message that indicates which key the network has selected to be used for this run of the AKMA service.

6.16.2
Solution details

6.16.2.1
AKMA Key Repository Service
6.16.2.1.1
AKMA Key Repository Service Serving Network Architecture Option
In order to support the functionality of established key usage, an AKMA Key Repository Service (AKRS) is included in the AKMA Architecture. In this version of the architecture, the AKRS connects to the SEAF. This architecture option is therefore called the 'Serving Network'-option. The AKRS has the following functionality:

-
Offering an interface to the AAuF to retrieve a KAKMA derived from KSEAF for AKMA purposes;

-
Storing the KSEAF
Note:
Storage of the KSEAF is offered in the SEAF already, so colocation of this service with the SEAF would reduce duplicate storage.

The service can be collocated with the AMF/SEAF but can also be run standalone. In this solution, collocation is assumed, and the service is referred to as AKRS.

The figure 6.16.2.1.1-1 below illustrates the proposed architecture.

[image: image1]
Figure 6.16.2.1.1-1 Architecture showing collocated AKRS and connections to the AauF
6.16.2.1.2
AKMA Key Repository Service Home Network Architecture Option
In order to support the functionality of established key usage, an AKMA Key Repository Service (AKRS) is included in the AKMA Architecture. This service has the following functionality:

-
Offering an interface to the AAuF to retrieve a KAKMA derived from KSEAF for AKMA purposes;

-
Storing the KAUSF or KSEAF
Note:
Storage of the KAUSF is offered in the AUSF already, so colocation of this service with the AUSF would reduce duplicate storage.

Note:
The KSEAF can be calculated from the KAUSF. As such, there is no need to store both the KSEAF and the KAUSF.

The service can be collocated with the AUSF but can also be run standalone. In this solution, collocation is assumed, and the service is referred to as AKRS.

The figure 6.16.2.1.2-1 below illustrates the proposed architecture.
 SHAPE * MERGEFORMAT

Figure 6.16.2.1.2-1 Architecture showing collocated AKRS and connections to the AAuF
6.16.2.2
AKMA Established Key Use Procedure
6.16.2.2.1
Procedure
This procedure takes the place of the "Authentication Procedure" in solution #2, clause 6.2.2.2.2 and takes place after an initiation procedure as detailed in 6.2.2.2.1.

The established key use procedure is initiated by the UE sending a request message to the AAuF including a key identifier (KI), and a flag indicating that the UE would like to use KSEAF for AKMA purposes. The AAuF verifies whether the use is allowed according to local policy and regulations and sends an "EstablishedKeyUseForAKMARequest" message to AKRS instance on the SEAF or AUSF.

Upon reception of the message, the SEAF or AUSF fetches the appropriate key from storage and calculates the AKMA Key as follows:
KAKMA = KDF (Input key, "AKMA", AKMA Counter),
Note:
If the instance on the AUSF fetches the KAUSF, it first needs to calculate the KSEAF before KAKMA can be calculated.
Where the Input key is or KSEAF and the AKMA counter is kept to avoid key repetition in case of multiple requests. Subsequently, the SEAF forwards the KAKMA and the value of the AKMA Counter to the AAuF together with a RAND and an XRES calculated from KAKMA and the RAND.

After reception of the key, the AAuF will authenticate the UE as follows by sending a message to the UE containing a flag indicating which key was used for calculation of KAKMA, the AKMA Counter, the random value RAND, and a MAC calculated as follows:

MAC = KDF (KAKMA, "AKMA MAC", RAND)

Upon reception of this message, the UE will calculate the KAKMA according to the key that was used, verify the MAC and if successful respond with a RES calculated from KAKMA and the RAND to the AAuF. The AAuF verifies that the RES is the same as the XRES and if so, replies with a service response including the temporary identifier and validity time.

The procedure is shown in figure 6.16.2.2.1-1

[image: image3]
Figure 6.16.2.2.1-1: Established Key Use procedure

As a result of the procedure the following has been achieved:
-
A KAKMA has been derived from KSEAF;

-
The UE and key anchor have authenticated each other using the newly derived KAKMA
6.16.3
Evaluation
This solution addresses key issue #10 by proposing a method for deriving an AKMA root key from KSEAF. In order to do so, this solution introduces an AKMA Key Repository Service which can be collocated with either the SEAF or the AUSF.

In order to derive the AKMA key, the solution proposes two routes:

-
Deriving KAKMA directly from KSEAF;

-
Deriving KAKMA from KAUSF with having KSEAF in between.

The solution works for both the case that the AKRS is present in the serving network, as well as the case that the AKRS resides the home network.
In the serving network option, the authentication is performed between the UE and the serving network without involving the home network. Consequently, the home network has no control over the authentication, which may pose problems with charging and liability. Therefore, this option is not preferred.

In the home network option, an authentication is performed between the UE and the home network based on KSEAF. Because KSEAF is known to the serving network, the serving network could pose as the AUSF which also leads to a situation of loss of home network control over the authentication. The solution lacks a mitigating measure for this attack. Therefore, this option is not preferred either.
*************** End of 3rd Change ****************
*************** Start of 4th Change ****************
6.19
Solution #19: Reusing KAUSF for AKMA

6.19.1
Introduction
This solution addresses KI#1, KI#2, KI#3, KI#4 and KI#5.

6.19.2
Solution details
This solution introduces two new functions to 5GC:

· AKMA Authentication Function (AAuF)

· AKMA Application Function (AApF)

[image: image4.emf]UE

AApF

5GC

UDM

AUSF

SEAF

AAuF

Ua*

SBI

Figure 6.19.2-1: AKMA Architecture that reuses KAUSF
In this solution, no separate authentication is performed to support AKMA functionality. Instead, it reuses the 5G primary authentication for AKMA purposes. Therefore, it is assumed that the UE had successfully registered to the 5G core before invoking AKMA services. A successful 5G primary authentication results in KAUSF being stored at the AUSF and the UE.

The KAUSF is used for the following AKMA purposes:

1. Deriving a KAUSF key identifier from KAUSF at the UE and the AUSF. The KAUSF key identifier is stored by the AUSF along with the KAUSF. The derived key identifier is transported from the UE in NAI format to the AApF where the “username” part of the NAI includes the UE’s KAUSF key identifier and the “realm” part is set to home network identifier identifying the AUSF in the home network that holds KAUSF. If the AApF does not have context associated with the key identifier, then the AApF sends a request to AAuF with the key identifier to request AKMA keys for the UE. The KAUSF key identifier is equivalent to the B-TID in GBA and identifies the KAUSF key of the UE from which other AKMA keys are derived.

2. Deriving a key KAKMA at the UE and the AUSF. The AUSF sends KAKMA to the AAuF. KAKMA is equivalent to key Ks for GBA in TS 33.220)

Both the AAuF and the UE use KAKMA to derive application specific keys needed for AKMA Application Functions (AApFs) in similar manner as for NAFs in GBA. This implies that existing GBA-based Ua protocols can be mostly reused (with necessary adaptations) by the UE and the AApF with AKMA and is denoted as Ua* interface.

Editor’s Note: Derivation of AKMA specific keys and the key identifier are FFS.
In this solution, the AKMA keys can only be refreshed by running a fresh primary authentication. This means that the AKMA key lifetime(s) cannot be shorter than the time interval between primary authentications.

Editor’s Note: It is FFS whether there is a need to refresh AKMA keys more often than the 5G primary authentication.
6.19.3
Evaluation
This solution reuses primary authentication and the key KAUSF for AKMA, thus avoiding the need to perform a separate authentication for AKMA.

This solution supports user privacy as SUPI is never sent by the UE to the network. The derived KAUSF key identifier is also used by the AApF to identify the UE.
*************** End of 4th Change ****************
5GC

UDM

AUSF

SEAF�AKRS

AAuF

SBI

UE

a1

AAuP

a2

5GC

UDM

AUSF�AKRS

SEAF�

AAuF

SBI

UE

a1

AAuP

a2

UE

AAuF

AUSF

Service request (SUCI/SUPI, Key Flag)

Established Key Use request (UE ID)

Decide whether key reusage is allowed

Fetch key from storage, derive KAKMA

Key Use response (KAKMA, RAND, XRES)

Service response (Key, Flag RAND, MAC)

Verify MAC, calculate RES

Response (RES)

Verify RES

Service response (Temp ID, validity timer)

UE
AApF

5GC
UDM
AUSF
SEAF
AAuF
Ua*
SBI

