
3GPP TSG SA WG3 (Security) Meeting #92
S3-182560
20-24 August 2018, Dalian(China)
revision of S3-182257
Source:
Nokia, NCSC
Title:
JOSE based protection of HTTP messages over N32-f
Document for:
Approval
Agenda Item:
7.1.13.1
1
Decision/action requested

Approve section 13.2.4 on JOSE based protection of messages over N32-f
2
References

[S3-181937]
Draft CR on Application layer security
[C4-186159]
Proposed CT4 pCR on N32-f Forwarding Procedure

[C4-186160]
Proposed CT4 pCR on N32-f Message Forwarding API design

3
Rationale

This pCR proposes to replace existing text in 13.2.4 with the text in clause 4 below.
There are several tdocs on N32-f submitted to the next CT4#86 meeting (Aug 20 – 24). The pCRs C4-186159 and C4-186160 discuss N32-f Forwarding procedure and API design respectively.
Based on discussions held during the SA3/CT4 conference call and the two pCRs mentioned above, the following ENs have been removed from S3-181937:

Editor's Note: It is FFS whether the reference from the cleartextblock JSON object to the encryptedBlock is secure, or whether a different way of linking these is required.

 Editor's Note: Message reformatting in SEPP may need to be revised following input from CT4.

Editor’s Note: The block names (encryptedBlock, clearTextBlock, patchRequest, modificationsBlock) used to refer to different parts of the reformatted HTTP message must be aligned with CT4 definitions.
Editor's Note: Message modifications in IPX may need to be revised following input from CT4.

In addition, the following EN is resolved:

Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the originalObject. This authorizes the first intermediary to perform modifications.

Reason: authorizedIPX ID is added to metadata object by vSEPP to identify first intermediary’s ID.

 Two new ENs are added in the proposed text below:
Editors Note: Reformatting of Multipart HTTP messages (with JSON + binary payload) to be aligned with CT4 once available.
Editor’s Note: Whether the second intermediary verifies first intermediary updates before applying its modifications is FFS.
4
Detailed proposal

**** Begin of changes ***
13.2.4
JOSE-based protection of N32-f messages
13.2.4.1
General

The SEPP receives the HTTP/2 request/response messages from the Network Function. It performs the following actions on these messages before they are sent on the N32-f interface to the SEPP in the other PLMN:

a) It parses the incoming message and reformats it to produce the input to JWE (clause 13.2.4.3).

b) It applies JSON Web Encryption (JWE) [x] on the input created in a) to protect the reformatted message (clause 13.2.4.4).

c) It encapsulates the resulting JWE object into a HTTP/2 message (as the body of the message) and sends to the SEPP in the other PLMN over the N32-f interface.

The path between the two SEPPs may take them via the cIPX and pIPX nodes. These IPX nodes may modify messages as follows:

a) The IPX node recovers the unencrypted (cleartext) section of the HTTP message (in the JWE object), modifies it according to the modification policy, and calculates an “operations” JSON Patch object. It creates a temporary JSON object with “operations” and few other parameters for replay protection etc. (clause 13.2.4.5.1).

b) The temporary JSON object is input into JSON Web Signature (JWS) [y] to create a JWS object (clause 13.2.4.5.2).

c) The JWS object is appended to the received message and forwarded to the next hop.

The JWS objects generated by the two IPX providers form an auditable chain of modifications that are applied to the parsed message at the receiving end after verifying that the patches conform to the modification policy.

Encryption of IEs take place end to end between cSEPP and pSEPP.

13.2.4.2
Overall Message payload structure for message reformatting at SEPP
A HTTP message received from an internal Network Function is reformatted into two temporary JSON objects that will be intput to JWE:

a. The dataToIntegrityProtect containing information that is only integrity protected. It contains the following:

-
clearTextEncapsulationMessage – contains the complete original HTTP message, excluding parts which require encryption and, including the pseudo-header fields, HTTP headers and HTTP message body.

-
metadata – contains SEPP generated information i.e. authorizedIPX ID, Message ID and N32-f context Id.
b. The dataToIntegrityProtectAndCipher containing parts of original message that require both encryption and integrity protection.

[image: image1.emf]{

���³dataToIntegrityProtect´���^

������³clearTextEncapsulatedMsg´���^

����������³Pseudo-Headers´���^

 ����³Method´���^`�

 ����³Scheme´���^`�����

����³Authority´����`�

����³Path´���^`�

�������������³Query&Fragment´���^`��

 },

����������³HTTP_Headers´���^

����³Hdr1´��^`�

����³Hdr2´�^³encBlockIdx´���`

 },

����������³Payload´���^

����³IE1´��^`�

 ����³IE2´��^³encBlockIdx´���`�

����³IE3´��^`�

 ����³IE4´��^`

 }

 },

������³metaData´���^

���������³Message Id´���^`�

�³authorizedIPX Id´���^`�

����������³N32-f Context Id´�����

 }

 },

���³dataToIntProtectAndCipher´���>

 Hdr2,

 IE2

]

}

Figure 13.2.4.2-1 Example of JSON representation of a reformatted HTTP message
Editors Note: Reformatting of Multipart HTTP messages (with JSON + binary payload) to be aligned with CT4 once available.
13.2.4.3
Message reformatting in sending SEPP

13.2.4.3.1
dataToIntegrityProtect

13.2.4.3.1.1

clearTextEncapsulatedMessage

This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a) Pseudo_Headers – the JSON object that includes all the Pseudo Headers in the message.

- For HTTP Request messages, the object contains entry each for the “:method”, “:path”, “:scheme” and “:authority” pseudo headers.

NOTE: If the “path” pseudoheader contains multiple parts separated by a slash (/) or includes a query parameter (following a “?”), an array is used to represent :path, with one element per part of the path (i.e. per "directory"). This enables ciphering individual element of the path (e.g. if SUPI is passed).

- For HTTP Response messages, the object contains the “:status” pseudo header.

1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as “key” and the header value as “value”.

1.c) Payload – the JSON object that includes the content of the payload of the HTTP message. Each attribute or IE in the payload shall form a single entry in the Payload JSON object. If there is any attribute value that requires encryption, it shall be moved into the dataToIntegrityProtectAndCipher JSON object (clause 13.2.4.3.2), and the original value in this element shall be replaced by the index in the form {"encBlockIdx": <num>} where "num" is the index of the corresponding entry in the dataToIntegrityProtectAndCipher array.
13.2.4.3.1.2
metadata

The JSON object containing information added by the sending SEPP. It contains:

a) Message Id: Unique identifier (64 bit integer) representing a HTTP Request/Response transaction between two SEPPs.
b) authorizedIPX Id: string identifying the next hop IPX (cIPX or pIPX) that is authorized to update the message. This field shall always be present. When there is no next hop IPX that’s authorized to update, the value of this field is set to “NULL”.

c) N32-f Context Id: Unique identifier representing the N32-f context information used for protecting the message.
13.2.4.3.2
dataToIntegrityProtectAndCipher
The dataToIntegrityProtectAndCipher is a JSON array that contains all the attribute values that require both encryption and integrity protection. Attribute values can come from any part of the original HTTP message – Pseudo_Headers, HTTP_Headers and Payload.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value within the dataToIntegrityProtect block. This associates each attribute in the dataToIntegrityProtectAndCipher block with the original attribute in the dataToIntegrityProtect block. This is needed to reassemble the original message at the receiving SEPP.

13.2.4.4
Protection using JSON Web Encryption (JWE)

Protection of reformatted HTTP messages between SEPPs shall use JSON Web Encryption (JWE) as specified in IETF RFC 7516 [xx]. All encryption methods supported by JWE are AEAD methods that encrypt, and integrity protect “plaintext” in one single operation and can additionally integrity protect additional data.

The dataToIntegrityProtectAndCipher and dataToIntegrityProtect blocks shall be input to JWE as plaintext and JWE Additional Authenticated Data (AAD) respectively. The JWE AEAD algorithm generates JWE encrypted text (ciphertext) and a JWE Authentication Tag (Message Authentication Code). The ciphertext is the output from symmetrically encrypting the plaintext, while the authentication tag is a value that verifies the integrity of both the generated ciphertext and the Additional Authenticated Data.

If the dataToIntegrityProtectAndCipher is not present in the rewritten HTTP message, the JWE plaintext shall be set to the string “NULL”. The JWE AEAD algorithm will generate ciphertext and an authentication tag, but the ciphertext will not contain meaningful information.

The Flattened JWE JSON Serialization syntax shall be used to represent JWE as a JSON object.

The session key shared between the two SEPPs, as specified in clause TBD, shall be used as the Content Encryption Key (CEK) value to the algorithm indicated in the Encryption algorithm ("enc") parameter in the JOSE header. The algorithm ("alg") parameter in the JOSE header denoting the key exchange method shall be set to "dir", i.e. "Direct use of a shared symmetric key as the CEK".

Editor's Note: how session key is derived from the exported key is FFS.

The 3GPP profile for supported cipher suites in the "enc" parameter is described in <TBD>.

If AES GCM is used for AEAD the security considerations in 8.4 of [xx] shall be taken into account. In particular, the same key shall not be used more than 232 times and an IV value shall not be used more than once with the same key.

The generated JWE object is transmitted on the N32-f interface in the payload body of a SEPP to SEPP HTTP/2 message.
13.2.4.4.1
Derivation of JWE keys

13.2.4.4.2
Derivation of JWE IV salts

13.2.4.5
Message modifications in IPX
13.2.4.5.1
modifiedDataToIntegrityProtect

[image: image2.emf]modifiedDataToIntegrityProtect =

{

 ´Operations´���JSON Patch that captures

IPX provider modifications,

 ´Identity´���´IPX1",

���´Tag´���JWE Tag generated by sending

SEPP

}

Figure 13.2.5.1-1 Example of JSON representation of IPX provider modifications
This is a temporary JSON object generated by an IPX provider as it modifies the original message. It contains the following:

a)
Operations - This is a JSON string element that captures IPX modifications based on RFC 6902 (JSON Patch). If no patch is required, the operations element is set to NULL.
b)
Identity - This is the Identity of the IPX performing the modification.
c)
Tag – A JSON string element to capture the “tag” value (JWE Authentication tag) in the JWE object generated by the sending SEPP. This is required for replay protection.
NOTE: Since there is no central registry that can ensure unique IPX Identities, it is expected that an IPX will include its Fully Quantified Domain Name (FQDN) in the JSON modification object.
13.2.4.5.2
Modifications by IPX
 NOTE: It is assumed that operators act as a certification authority for IPX providers they have a direct business relationship with. In order to authorize N32-f message modifications, operators sign a digital certificate for each of these IPX providers and provide it to both the IPX provider itself as well as their roaming partners to enable them to validate any modifications by this IPX provider.
Only cIPX and pIPX shall be able to modify messages between cSEPP and pSEPP. In cases of messages from cSEPP to pSEPP, the cIPX is the first intermediary, while the pIPX is the second intermediary. In cases of messages from pSEPP to cSEPP the pIPX is the first intermediary, while the cIPX is the second intermediary.

The first intermediary shall parse the encapsulated request (i.e. the clearTextEncapsulationMsg in the dataToIntegrityProtect block) and determine which changes are required. The first intermediary creates an “operations” JSON document to describe the differences between received and desired message, taking the syntax and semantic from RFC 6902 [xx] (JSON patch), such that, when applying the JSON patch to the encapsulated request the result will be the desired request. If no patch is required, the operations element is NULL.
Note: It is necessary to create a JWS object even if no patch is required to prevent deletion of modifications.
The first intermediary creates a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.4.5.1. It includes its identity and the JWE authentication tag, which associates this update by the intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object is input to JWS to create a JWS object. The generated JWS object is appended to the payload in the HTTP message. The message is then forwarded to the next hop.
The second intermediary parses the encapsulated request, applies the modifications described in the JSON patch appended by the first intermediary and determines further modifications required for obtaining the desired request. These modifications are recorded in an additional JSON patch against the JSON object resulting after application of the first intermediary's JSON patch. If no patch is required, the operations element for the second JSON patch is NULL
Editor’s Note: Whether the second intermediary verifies first intermediary updates before applying its modifications is FFS.
The second intermediary creates a modifiedDataToIntegrityProtect JSON object as described in clause 13.2.4.5.1. It includes its identity and the JWE authentication tag, which associates this update by the second intermediary with the JWE object created by the sending SEPP.

The modifiedDataToIntegrityProtect JSON object is input to JWS to create a JWS object. The generated JWS object is appended to the payload in the HTTP message. The message is then forwarded to the receiving SEPP.
13.2.4.6
Protecting IPX modifications using JSON Web Signature (JWS)

Protection of IPX provider modified attributes shall use JSON Web Signature (JWS) as specified in IETF RFC 7515 [45]. The mechanism described in this clause uses signatures, i.e. asymmetric methods, with private/public key pairs.

When an IPX node modifies one or more attributes of the original HTTP message and creates a modifiedDataToIntegrityProtect to record its modifications, it shall use JWS to integrity protect the modifiedDataToIntegrityProtect object.
The private key of the IPX provider shall be used as input to JWS for generating the signature representing the contents of the patchRequest.
The "alg" parameter in the JOSE header indicates the chosen signature algorithm. The 3GPP profile for supported algorithms is described in TBD.
The Flattened JWS JSON Serialization syntax shall be used to represent JWS as a JSON object.

13.2.4.7
Message verification by the receiving SEPP

The receiving SEPP shall decrypt the JWE ciphertext using the shared session key and the following parameters obtained from the JWE object – Initialization Vector, Additional Authenticated Data value (clearTextEncapsulatedMessage in “aad”) and JWE Authentication Tag (“tag”).

The content encryption algorithm checks the integrity and authenticity of the clearTextEncapsulatedMessage and the encrypted text by verifying the JWE Authentication Tag in the JWE object. The algorithm returns the decrypted plaintext (dataToIntegrityProtectAndCipher) only if the JWE Authentication Tag is correct.

The receiving SEPP refers to the NF API data-type placement mapping table to re-construct the original reformatted message by updating corresponding entries in clearTextEncapsulatedMessage with values in the dataToIntegrityProtectAndCipher array.

The receiving SEPP shall then verify IPX provider updates by verifying JWS signatures added by the intermediaries. For modifications by IPX provider that the receiving SEPP’s operator does not have a business relationship with, the SEPP shall verify the JWS signature using the public key contained in the IPX provider’s certificate obtained as part of the roaming agreement with the related operator (clause 13.2.4.5.2) and validate that the operator’s root certificate is part of the certificates trust chain. It then checks that the IPX's ID in the modifiedDataToIntegrity block matches the "authorizedIPX Id" field added by the sending SEPP.
The receiving SEPP checks whether the modifications performed by the intermediaries were permitted by the respective modification policies. If this is the case, the receiving SEPP applies the patches in the “operations” field in order, performs plausibility checks, and creates a new HTTP request according to the "patched" clearTextEncapsulatedMessage.

13.2.4.8
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image3.emf]cSEPP pSEPP pIPX cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX

modifications to the

message

5. Protected HTTP

Request

w/IPX modification

6. Append pIPX

modifications to the

message

7. Protected HTTP

Request

w/IPX modifications

8. Verify integrity of clearText, encrypted text

Decrypt encrypted Block

Verify IPX updates in modificationsBlock and

apply them.

Reassemble the HTTP Request message.

9. Modified HTTP

Request

10. HTTP Response

11. Message rewriting and

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX

modifications in the

message

14. Protected HTTP

Response

w/IPX modification

15. Append cIPX

modifications in the

message

16. Protected HTTP

Response

w/IPX modifications

18. Modified HTTP

Response

17. Verify message.

Reassemble the HTTP response.

Figure 13.2.4.8-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.

2.
The cSEPP shall begin reformating the HTTP Request message

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextEncapsulatedMessage block containing the following child JSON objects:

-
Pseudo_Headers

-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption between two SEPPs, the attribute value is copied into a dataToIntegrityProtectAndCipher JSON object and
the attribute’s value in the clearTextEncapsulatedMessage is replaced by the index of attribute value in the dataToIntegrityProtectAndCipher block.

A metadata block is created that contains the N32-f context Id, Message Id generated by SEPP for this request/response transaction and next hop identity.

The cSEPP protects dataToIntegrityProtect block and dataToIntegrityProtectAndCipher block as per clause TBD13.2.4.4. This results in a single JWE object representing the protected HTTP Request message.

b. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS becomes the payload of the new HTTP message generated by cSEPP.

3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary.

4.
The first intermediary (e.g. visited network's IPX provider) creates a new modifiedDataToIntegrityProtect JSON object with three elements:

a. The operations JSON element contains modifications performed by the first intermediary as per RFC 6902[y].

b. The intermediary includes its own identity in the Identity field of the patchRequest element.

c. The “tag” element, present in the JWE object generated by cSEPP, is copied into the modifiedDataToIntegrityProtect object. This acts as a replay protection for updates made by the first intermediary.

The intermediary executes JWS on the modifiedDataToIntegrityProtect JSON objectand appends to the message..
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary performs further modifications if required. The second intermediary executes JWS on the modifiedDataToIntegrityProtect JSON object and appends it to the message..
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It extracts the serialized values from the components of the JWE object.

-
Invokes JWE decrypt function to check the integrity of the message and decrypt the dataToIntegrityProtectAndCipher block. This results in entries in the encrypted block becoming visible in cleartext.

-

The pSEPP updates the clearTextEncapsulationMessage block in the message by replacing the references to the dataToIntegrityProtectAndCipher block with the referenced decrypted values from the dataToIntegrityProtectAndCipher block.
-
It then verifies IPX provider updates of the attributes in the modificationsArray. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextEncapsulationMessage in order.
The pSEPP re-assembles the full HTTP Request from the contents of the clearTextEncapsulationMessage.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.

13.2.4.9
JOSE profile

Editor's Note: More suitable place to the JOSE profile could be TS 33.310 or an annex.
13.2.4.9.1
JWE profile

SEPPs shall support JWE as defined in RFC 7516 [xx] with the following extensions.

"enc" parameter A128GCM (AES GCM with a 128-bit key) shall be supported. "enc" parameter A256GCM (AES GCM using 256-bit key) should be supported.

"alg" parameter "dir" (Direct use of a shared symmetric key as the CEK) shall be supported.

13.2.4.9.2
JWS profile

SEPPs shall support JWS as defined in RFC 7515 [45] with the following extensions. If a cIPX or pIPX performs modifications, then it shall also support JWS as the SEPPs shall.

"alg" parameter ES256 (ECDSA using P-256 and SHA-256) shall be supported. ES256 shall be used by cIPX and pIPX to sign modifications.

**** End of changes ***
�Check if this section is correct.

There are few more TBDs to resolve in this section.

�Is there a mechanism for generating a session key from the key exported from the TLS session? Or is that key used directly?

_1596433550.vsd
{
 “dataToIntegrityProtect” : {
 “clearTextEncapsulatedMsg” : {
 “Pseudo-Headers” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “metaData” : {
 “Message Id” : {},
	 “authorizedIPX Id” : {},
 “N32-f Context Id” : ()
 }
 },
 “dataToIntProtectAndCipher” : [
 Hdr2,
 IE2
]
}

_1596443114.vsd
modifiedDataToIntegrityProtect =
{
 ”Operations” : JSON Patch that captures 	IPX provider modifications,
 ”Identity” : ”IPX1",
 ”Tag” : JWE Tag generated by sending 	SEPP
}

_1587819440.vsd
{
 “authenticatedBlock” : {
 “clearTextBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1595444995.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of clearText, encrypted text
Decrypt encrypted Block
Verify IPX updates in modificationsBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

_1587808798.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to miPBlock in the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to miPBlock in the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of ipBlock.
Decrypt encBlock.
Verify IPX updates in mipBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications to miPBlock in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications to miPBlock in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

