

	
3GPP TSG-SA3 Meeting #92	S3-182107
Dalian, China, 20th Aug 2018 - 24th Aug 2018
	CR-Form-v11.2.1

	CHANGE REQUEST

	

	
	33.180
	CR
	0085
	rev
	-
	Current version:
	14.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	[MCSec] 33180 R14. Examples of MC service ID shall be URI

	
	

	Source to WG:
	Airbus DS SLC

	Source to TSG:
	

	
	

	Work item code:
	MCSec
	
	Date:
	2018-07-11

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-14

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	As mentioned in TS 23.280 clause 8.1.2 a MC service ID shall be an URI. The examples of identifiers in TS 33.180 are of the form user@example.org which is not an URI.

	
	

	Summary of change:
	In 5.2.2, 5.2.5, 5.7.1, D.2, D.3.4.1, D.3.4.2, D.3.4.3, and F.2.1.2 we update the examples to contain SIP URIs.

	
	

	Consequences if not approved:
	The examples in the specification may mislead the reader into thinking that a MC service ID can be user@domain.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Page 1

************************ Start of change 1 *********************************
[bookmark: _Toc509325109]5.2.2	Common key distribution
The security mechanism described in this clause allows a key, K, to be distributed from an initiating party to a receiving party. It provides confidentiality of the key, and integrity and authenticity of the payload. It is used within a number of different security procedures in this specification.
The key, K, is distributed encrypted specifically to the receiving entity and signed by the initiating entity. Prior to call commencement, both MCX UEs shall be provisioned by the KMS with time-limited key material associated with the MCX entity’s URI. The key is distributed with a 32-bit Key Identifier (K-ID). This payload is a MIKEY-SAKKE I_MESSAGE, as defined in IETF RFC 6509 [11], which ensures the confidentiality of the key, plus integrity and authenticity of the payload.
The key is encrypted to the user identity (UID) associated to the receiving MCX entity using the security domain parameters provided in the public values in the certificate received from the KMS. The UID used to encrypt the data is derived from the receiving entity's URI (e.g. sip:user.002@mcptt.example.org) and a time-related parameter (e.g. the current year and month). The terminating entity’s URI is added to the recipient field (IDRr) of the message.
The payload includes the encrypted key and the key identifier (K-ID). The key is unique within the MC domain. On creating the key, the initiator generates a 32-bit key identifier (K-ID). The 4 most significant bits of the K-ID shall indicate the purpose of the key, the other 28-bits shall be randomly generated. The key identifier (K-ID) is stored in the CSB-ID field of the MIKEY I_MESSAGE.
The payload is signed using (the KMS-provisioned key associated to) the identity of the initiating entity. The UID used to sign the data is derived from the initiating entity's URI (e.g. sip: HYPERLINK "mailto:user.001@mcptt.example.org" user.001@mcptt.example.orguser.001@mcptt.example.org) and a time-related parameter (e.g. the current year and month). The initiating entity's URI is added to the initiator field (IDRi) of the message.
************************ End of change 1 *********************************

************************ Start of change 2 *********************************
[bookmark: _Toc509325112]5.2.5	Key distribution with SAKKE-to-self payload
The key distribution mechanism defined in clauses 5.2.2, 5.2.3 and 5.2.4 may be extended to allow the initiating entity to be able to decrypt the distributed key, K contained within the payload.
NOTE: 	Where the initiating entity is an MCX user logged into multiple devices, this extension is necessary to allow all devices to obtain the key, K and decrypt any subsequent communication.
In addition to encrypting the key, K, to the receiving entity, the key is also encrypted to the initiating entity. The UID used to encrypt the data is derived from the initiating entity's URI (e.g. sip:user.002@mcptt.example.org) and a time-related parameter (e.g. the current year and month). The encapsulated key is added to a SAKKE-to-self payload within the MIKEY I_MESSAGE. No other payloads (e.g. IDRr) are affected.
************************ End of change 2 *********************************

************************ Start of change 3 *********************************
5.7.1	General
To create the group's security association, a Group Master Key (GMK) and associated identifier (GMK-ID) is distributed to MCX UEs by a Group Management Server (GMS). The GMK is distributed encrypted specifically to a user and signed using an identity representing the Group Management Server. Prior to group key distribution, each MCX UE within the group shall be provisioned by the MCX Key Management Server (KMS) with time-limited key material associated with the MCX user as described in clause 5.3. The Group Management Server shall also be provisioned by the MCX KMS with key material for the GMS's identity (the GMS Server URI).
The GMK is distributed from the GMS to a MCX client using the security mechanism described in clause 5.2.2, transported over the SIP bearer. For GMKs, end-point diversity is required and hence the extension in clause 5.2.3 is applied. Additional parameters may be included as defined in clause 5.2.4. The SAKKE-to-self extension may be included as defined in clause 5.2.5. Identity hiding may be supported as defined in clause 5.2.6.
GMKs may be managed individually per Group ID or the same GMK may be assigned to multiple MC Group IDs (using the MIKEY general extension payload defined in Clause E.6). This means that each specified MC Group ID in the MIKEY general extension payload shall use this GMK for group communications. Assigned MC Group IDs may include any combination of MCPTT Group IDs, MCData Group IDs or MCVideo Group IDs. Assigning the same GMK to multiple Group IDs does not prevent individual key management at a later time or vice versa.
An MC client may have multiple active GMKs associated with a Group ID. When this occurs, the MC client shall use the active GMK with the most recent Activation Time (as defined in Clause E.6.4) when encrypting group media.
The initiating entity shall be the initiating GMS. The initiating entity URI shall be the URI of the GMS (e.g. sip: HYPERLINK "mailto:gp.manager@mcptt.example.org" gp.manager@mcptt.example.orggp.manager@mcptt.example.org). The receiving entity shall be the terminating MCX user. The receiving entity URI shall be the MCX ID of the terminating user. The distributed key, K, shall be the GMK, the key identifier K-ID shall be the GMK-ID and the end-point-specific key identifier, UK-ID shall be the GUK-ID.
************************ End of change 3*****************************

************************ Start of change 4 *********************************
[bookmark: _Toc509325295]D.2	KMS requests
Requests to the KMS are made to specific resource URIs. Resource URIs are rooted under the tree "/keymanagement/identity/v1" for a particular domain. For example, the resource path to initialize a user within the domain "example.org" is:
EXAMPLE 1:
http://example.org/keymanagement/identity/v1/init

To make a "KMS Initialize" request the key management client shall make a HTTP POST request to the subdirectory "init" i.e. Request-URI takes the form of:
EXAMPLE 2:
…/keymanagement/identity/v1/init

To make a "KMS KeyProvision" request the key management client shall make a HTTP POST request to the subdirectory "keyprov" i.e. Request-URI takes the form of
EXAMPLE 3:
…/keymanagement/identity/v1/keyprov

Optionally, the Request-URI of the POST request may contain a specific user or group URI which the key management client would like the KMS to provision. The URI shall be within a subdirectory of "keyprov". For example, the user URI "sip:user@example.org" is provisioned via a request to: "/keymanagement/identity/v1/keyprov/sip%3Auser%40example.org". Additionally, if the Request-URI contains a specific URI, the client may also request a specific time which the client would like the KMS to provision. The time URI shall be the same time as used in the MIKEY payload, a NTP-UTC 64-bit timestamp as defined in IETF RFC 5905 [29]. For example, if the user required keys specifically for 23rd Feb 2014 at 08:39:14.000 UTC, the request would be:
EXAMPLE 4:
…/keymanagement/identity/v1/keyprov/sip%3Auser%40example.org/D6B4323200000000

To make a "KMS CertCache" request the key management client shall make a HTTP POST request to the subdirectory "certcache". For example, the request-URI takes the form of "/keymanagement/identity/v1/certcache". If a cache has been previously received, the request URI may optionally be directed to the subdirectory indicating the number of the client's latest version of the cache. For example, the request-URI takes the form of
EXAMPLE 5:
…/keymanagement/identity/v1/certcache/12345

If the optional security extension is used, requests may be authenticated using the shared Transport Key (TrK). To achieve this, the request should be accompanied with an XML payload containing details of the request, signed by the shared TrK.
************************ End of change 4*********************************

************************ Start of change 5 *********************************
[bookmark: _Toc509325306]D.3.4.1	Example KMSInit XML
If the security extension is used, it is assumed that before this response is received, the secure element within the KMS and the secure element within the key management client have shared a bootstrap TrK, e.g. 'tk.11.user@example.org'.
In this example, the KMS provides the user with the KMS root ceriticate and a new TrK to protect future KMS communications. Keys are encrypted and the message is signed using the bootstrap TrK.
EXAMPLE:
<?xml version="1.0" encoding="UTF-8"?>
<SignedKmsResponse xmlns= " urn:3gpp:ns:mcsecKMSSecExt:1.0" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns:se = " urn:3gpp:ns:mcsecKMSSecExt:1.0"
 xsi:schemaLocation = " urn:3gpp:ns:mcsecKMSSecExt:1.0 SE_KmsInterface_XMLSchema.xsd" Id = "xmldoc">
<KmsResponse xmlns= " urn:3gpp:ns:mcsecKMSInterface:1.0" Version = "1.0.0">
<KmsUri>kms.example.org</KmsUri>
 <UserUri>sip:user@example.org</UserUri>
 <Time>2014-01-26T10:05:52</Time>
 <KmsId>KMSProvider12345</KmsId>
 <ClientReqUrl>http://kms.example.org/keymanagement/identity/v1/init</ClientReqUrl>

************************ End of change 5*********************************

************************ Start of change 6 *********************************
[bookmark: _Toc509325307]D.3.4.2	Example KMSKeyProv XML
In this example, the user's key material is provided for two user identifiers. The key material includes the UserDecryptKey (see IETF RFC 6508 [10]) and the UserSigningKey and PVT (see IETF RFC 6507 [9]) for each identifier.
As the security extension has been used, the key material is encrypted and the message signed using the shared TrK. Additionally, a new TrK is provided as part of the key provision.
EXAMPLE:
<?xml version="1.0" encoding="UTF-8"?>
<SignedKmsResponse xmlns= " urn:3gpp:ns:mcsecKMSSecExt:1.0" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns:se = " urn:3gpp:ns:mcsecKMSSecExt:1.0"
 xsi:schemaLocation = " urn:3gpp:ns:mcsecKMSSecExt:1.0 SE_KmsInterface_XMLSchema.xsd" Id = "xmldoc">
<KmsResponse xmlns= " urn:3gpp:ns:mcsecKMSInterface:1.0" Version = "1.0.0">
 <KmsUri>kms.example.org</KmsUri>
 <UserUri>sip:user@example.org</UserUri>
 <Time>2014-01-26T10:07:14</Time>
 <KmsId>KMSProvider12345</KmsId>
 <ClientReqUrl>http://kms.example.org/keymanagement/identity/v1/keyprov</ClientReqUrl>
 <KmsMessage>
 <KmsKeyProv Version = "1.0.0" xsi:type = "se:KmsKeyProvTkType">
 <KmsKeySet Version = "1.1.0">
 <KmsUri>kms.example.org</KmsUri>
 <CertUri>cert1.kms.example.org</CertUri>
 <Issuer>www.example.org</Issuer>
 <UserUri>sip:user@example.org</UserUri>
 <UserID>0123456789ABCDEF0123456789ABCDEF</UserID>
 <ValidFrom>2015-12-30T00:00:00</ValidFrom>
 <ValidTo>2016-03-29T23:59:59</ValidTo>
 <KeyPeriodNo>1514</KeyPeriodNo>
 <Revoked>false</Revoked>
 <UserDecryptKey xsi:type = "se:EncKeyContentType">
 <EncryptedKey xmlns = "http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes256"/>
 <ds:KeyInfo>
 <ds:KeyName>tk.12.user@example.org</KeyName>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>DEADBEEF</CipherValue>
 </CipherData>
 </EncryptedKey>
 </UserDecryptKey>
 <UserSigningKeySSK xsi:type = "se:EncKeyContentType">
 <EncryptedKey xmlns = "http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes256"/>
 <ds:KeyInfo>
 <ds:KeyName>tk.12.user@example.org</KeyName>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>DEADBEEF</CipherValue>
 </CipherData>
 </EncryptedKey>
 </UserSigningKeySSK>
 <UserPubTokenPVT xsi:type = "se:EncKeyContentType">
 <EncryptedKey xmlns = "http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#kw-aes256"/>
 <ds:KeyInfo>
 <ds:KeyName>tk.12.user@example.org</KeyName>
 </ds:KeyInfo>
 <CipherData>
 <CipherValue>DEADBEEF</CipherValue>
 </CipherData>
 </EncryptedKey>
 </UserPubTokenPVT>
 </KmsKeySet>
 <KmsKeySet Version = "1.1.0">
 <KmsUri>kms.example.org</KmsUri>
 <CertUri>cert1.kms.example.org</CertUri>
 <Issuer>www.example.org</Issuer>
 <UserUri>sip:user.psuedonympseudonym@example.org</UserUri>
 <UserID>0011223344556677889900AABBCCDDEEFF</UserID>
 <ValidFrom>2015-12-30T00:00:00</ValidFrom>
 <ValidTo>2016-03-29T23:59:59</ValidTo>
 <ValidTo>2016-03-29T23:59:59</ValidTo>

************************ End of change 6*********************************

************************ Start of change 7 *********************************
[bookmark: _Toc509325308]D.3.4.3	Example KMSCertCache XML
In this example, a number of 'external' KMS certificates are provided to the user. These allow the user to encrypt to users managed by a different KMS.
As the security extension is in use, the message is signed using the TrK.
EXAMPLE:
<?xml version="1.0" encoding="UTF-8"?>
<SignedKmsResponse xmlns= " urn:3gpp:ns:mcsecKMSSecExt:1.0" xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
 xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns:se = " urn:3gpp:ns:mcsecKMSSecExt:1.0"
 xsi:schemaLocation = " urn:3gpp:ns:mcsecKMSSecExt:1.0 SE_KmsInterface_XMLSchema.xsd" Id = "xmldoc">
<KmsResponse xmlns= " urn:3gpp:ns:mcsecKMSInterface:1.0" Version = "1.0.0">
 <KmsUri>kms.example.org</KmsUri>
 <UserUri>sip:user@example.org</UserUri>
 <Time>2014-01-26T10:14:12</Time>
 <KmsId>KMSProvider12345</KmsId>

************************ End of change 7*********************************

************************ Start of change 8 *********************************
F.2.1.2	Example UID
This clause calculates an example UID demonstrating the hash defined in clause F.2.1.1.
In this example:
-	The identifier, P1, is sip: HYPERLINK "mailto:user@example.org" user@example.orguser@example.org.
-	The KMS identifier, P2, is kms.example.org.
-	The key period is 4 weeks, hence P3 is 2592000.
-	The offset, P4, is 0.
-	the calculation time is: <2014:01:26T10:07:14Z>, hence TIME is 3599719634.
Based on these details:
P5 = Floor ((3599719634 – 0) / 2592000) = 1388.
Consequently, S is constructed from the concatenation of:
FC = 0x00
P0 = MIKEY-SAKKE-UID
L0 = 15
P1 = sip:user@example.org
L1 = 1620

************************ End of change 8******************************
[bookmark: _GoBack]
