
3GPP TSG SA WG3 (Security) Meeting #93
S3-182961
12 Nov - 16 Nov, 2018, Spokane (USA)

Source:
Vodafone
Title:
pCR to TR 33.841- Clarification to section 7.1
Document for:
Approval

Agenda Item:
5.8
1
Decision/action requested

Approval to make the text changes indicated below
2
Rationale

Section 7.1 of [1] discusses attacks that become possible against a block cipher in counter mode, when the same counter block is used multiple times. The proposed revision clarifies the possible attacks and their implications.
3
Detailed proposal

Make the following changes to [1]:
***** Start of change *****
7.1
Risks and mitigations for quasi-random IVs in counter mode

7.1.1
The attacks and their cost

When a block cipher is used in counter mode, reuse of the same counter block can in some cases compromise the confidentiality of the system. We have identified three potential attacks.
Attack 1: If the same counter block is used twice by the same user with the same key, then there is an immediate and serious loss of security. This means that two different plaintext segments are encrypted by XORing with the same keystream block, and hence the attacker can recover the XOR of the two plaintext segments. Depending on the entropy of the plaintext, this may be enough to recover both plaintext segments in their entirety.
Attack 2: A computationally efficient attack is also possible if the same predictable counter block is likely to be used by many different users with different keys. (A simple example of this would be if the first counter block used with a newly computed key is always the zero block.) It may then be worthwhile for the attacker to precompute a large rainbow table, based on the mapping from a variable key and that fixed counter value to a variable keystream block. Whenever a known plaintext block is encrypted with that fixed counter value, the attacker can then use the rainbow table to look up the keystream block and (if successful) recover the key. The probability of success on each occasion depends on the number of keys covered by the rainbow table. Building the table may be computationally demanding, but only has to be done once; the time taken for an individual attack instance can then be much lower. (Note: rainbow tables are not the only possible construction for these look-up tables, but they are typically the most efficient.)

Attack 3: Finally, a multi-target attack is possible if known plaintext is encrypted with the same counter block (not necessarily one predictable in advance) by many different keys. If the attacker can collect 2k of these cipher blocks, and thus 2k blocks of keystream, then the attacker can compute the function mapping a variable key and that counter block to a variable keystream block for 2n-k trial values of the key, and will find a match to one of the keystream segments with high probability. Note that the blocks may come from different users, and there is no control over which user’s key is recovered.

Attack 1 does not involve any kind of key search, and has very low computational complexity. For attacks 2 and 3, it is not clear that there is any impact of quantum computing through Grover’s algorithm which is usually phrased in terms of finding as single input to a function that gives one specific output. However, classical computing may reach zetta-scale power by 2030 if Moore’s law continues to hold. That means, it is plausible to expect that the most powerful supercomputer in 2030-40, will be able to perform O(270) FLOPS. A cryptographically significant computation is not equivalent to one floating-point operation (say on a Xeon), so this may equate to fewer cryptographic operations per second per super computer, perhaps around O(264). Thus for instance Attack 3 with n=128 and k=32 may take hundreds, if not thousands, of years. For reference, over the previous 20 years, the leading super-computers of the day cost between 100 and 400 million dollars.
Editor’s Note: It is FFS whether FLOPS is the most appropriate measure of computing power for this assessment.

7.1.2
Applicability to 3GPP use of counter mode
3GPP NEA algorithms do not use a random field as an IV. The counter block is constructed as follows:

· COUNT, 32 bits, increasing per-message sent under the same key to avoid repeated keystreams, different COUNTs are used for different security associations, initialised to 0.

· BEARER, 5 bits

· DIRECTION, 1 bit

· 0-padding, 26 bits

· COUNTER, 64-bit counter incremented per cipher block, initialised to 0

The use of COUNT protects effectively against Attack 1.
For Attacks 2 or 3, an attacker would need to collect all messages with the same COUNT, BEARER, DIRECTION and COUNTER for the attack, as well as to reliably know the plain text.

Editor’s Note: it is FFS to what extent and where (NAS, RRC, UP) predictable plain texts will be repeatedly encrypted with any of the different keys and the same counter value in 3GPP systems.

Either of Attacks 2 or 3 recovers one of the session confidentiality keys.

7.1.3
Mitigations

The counter block construction described in the previous section means that counter blocks will indeed be quite predictable and repetitive. This makes both of Attacks 2 and 3 potentially applicable in theory. In practice, a key length of 128 bits means that both attacks are still very computationally intensive, but they are nevertheless more efficient than a straightforward exhaustive key search.

If the risks are deemed sufficient, a simple mitigation for this threat is to include some random data in part of the counter block to ensure that the counter block is sufficiently unlikely to repeat across large numbers of different users. Alternatively, the key size could be made longer to render the attack impractical, though the attack still implies that the security is affected, and thus to maximise the security of the system, it could be advisable to randomise the IV regardless of the key size.

In the simple solution case, for NEA1/2/3 the 26 bits of 0-padding could be replaced with a random value. For more security, some of the 64-bit counter could be given over to a random field. The random value need only change when the encryption key changes. It needs to be established if this is sufficient, how many bits should be randomised, and if it introduces any further issues.
Sharing random bits consumes bandwidth; if it is preferable to avoid this, it may instead be possible to use some bits that would be known to both parties, but that would vary between instances. Some bits from a temporary subscriber identifier might be suitable, for instance – but the options would depend on the particular link being encrypted.
***** End of change *****
4
References

[1]
TR 33.841, v0.5.0

