3GPP TSG SA WG3 (Security) Meeting #91
S3-181427
16-20 April 2018, Belgrade (Serbia)
revision of S3-18xabc
Source:
Nokia
Title:
SBA: A framework for HTTP message protection scheme in SEPP
Document for:
Endorsement
Agenda Item:

7.2.13.1

1
Decision/action requested

Endorse the proposal presented in this document as the way forward for HTTP protection scheme in SEPP
2
References

[1]
TS 33.501-v15.0.0

[2]
TS 29.500 v1.0.0
[3]
S3-180888 SBA Living document
3
Rationale
At the conference call on March 28th there was a discussion on possible phasing out of Interconnect security, and the general agreement, as captured by the mintues of the meeting was that:
For Rel-15, specify a simple solution that enforces general integrity protection on the complete N32 message, rather than on individual attributes.
Not explicitly clarified by the minutes, but it’s Nokia’s belief that Rel-15 must also specify confidentiality protection of minimal set of parameters, as captured in clause 4.1.1 of the living document [3].
A solution is therefore required in Rel 15 that provides end to end confidentiality and end to end integrity protection of selected parts of the HTTP message, which can then be further enhanced in Rel 16 to support integrity protection with verifiable modification by IPX providers.
The SBA living document [3] has a scheme (clause 4.3.2.2.2.1) for integrity protection of data that allows intermediaries to be able to modify the message in a verifiable way. We now need a scheme that builds upon it to also include the other two protection methods.

This paper proposes a a framework that provides a basic structure and scheme for Application layer security in SEPP. The framework provides a definition for the N32 message structure to carry protected data of all types - e2e encrypted, e2e integrity protected and modifiable integrity protected. This allows SA3 to deliver in stages if required.
4
Detailed proposal
4.1
Data re-arrangement

The HTTP protocol, which is used to carry messages between network functions, includes three protocol elements:

1. Either a request line or a response line. The request line consists of 1) an HTTP method, 2) a request URI that may contain an authority (host and port), a hierarchical part, a query and a fragment part, and 3) a protocol identifier. The response line consists of a protocol identifier, a status code and a status text
2. A set of HTTP header

3. An optional payload body formatted as JSON
All three parts may contain parameters of a higher-layer protocol that is carried over HTTP, which may be of interest to the intermediaries for reading and/or modifying them.

For each part, the data are re-arranged (for instance by defining a suitable intermediate JSON structure or JSON structures) such that one of the three protection methods defined in 4.2 can be applied to them.
Once appropriate protection methods are applied, the rearranged datastructure is transmitted over the N32 interface between two SEPPs.
In the next sublause we present a format for a generic N32 message that’s exchanged between two SEPPs over N32.

4.1.1
Format of the N32 message
The figure below provides a generic structure of a N32 message between two SEPPs.

[image: image1.emf]HTTP Request Line

HTTP Header

HTTP Body

{

Request_Line = {

Method = { }

Scheme = { },

Authority = (},

PathAndQuery = { },

Protocol version = ()

}

HTTP_Headers = {

Hdr1 = JWS encoded Header 1

Hdr2 = JWE encoded Header 2

}

Payload = {

encrPayload = {

JWE encoded

},

e2eIntegrity = {

JWS encoded

},

modifiableIntegrity = {

JWS_Orig + JWS_patches

}

}

}

At the top layer there are three root level JSON objects:

a) Request_Line/Response_Line is the JSON object that has individual attributes for the various parts of the HTTP Request/HTTP Response line respectively.

b) HTTP_Headers is the JSON object to store HTTP Headers in the message.

c) Payload is the JSON object to store payload information under three different 2nd level JSON objects

- e2e encrypted, e2e integrity protected and modifiable integrity protected.
Let’s look at how SEPP partitions the incoming message into multiple parts as defined by the above structure.
4.1.3
Partitioning HTTP message into the generic N32 message structure
Pre-condition: The sending SEPP (sSEPP) needs to have the required protection policy applicable for this service request.
a.1) If the message is an HTTP request message:

The sSEPP shall encapsulate the HTTP request line into a JSON object called Request_Line containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request.

a.2) If the message is an HTTP response message:

An HTTP response line is included in a Response_Line object that contains an attribute for each of the HTTP version, the status code and the status message.

b) The sSEPP shall encapsulate all the headers of the request into a JSON object called HTTP_Headers with one attribute for each header. This allows for individual treatment of each header attribute.

c) The sSEPP shall include the payload body of the request in a JSON object called Payload. This contains three JSON objects:

· encryptedPayload containing all JSON objects that require e2e confidentiality protection

· e2eIntegrityProtectedPayload containing all JSON objects that are e2e protected and not allowed to be modified by the intermediaries

· modifiableIntegrityProtectedPayload containing all JSON objects that are protected by sSEPP but are also allowed to be modified by authorized intermediaries

d) Additional binary payloads in multipart messages from NF are represented as separate binaryPayload objects.

4.2
Methods of protection
a) Encryption (enc): The part(s) of the SEPP – SEPP N32 message that require(s) e2e confidentiality protection is/are encrypted, e.g. using JWE

b) E2E Integrity Protection (e2eProt): The part(s) of the SEPP – SEPP N32 message that require(s) e2e protection from modification by the intermediaries is/are signed, e.g. using JWS

c) Integrity Protection with Modification Tracking (modE2eProt): The part(s) of the SEPP-SEPP N32 message that are allowed to be modified (selectively) by the intermediaries is/are protected by a method for e.g. as documented in clause 4.3.2.2.2.1 of the SBA living document.
4.3
Protecting HTTP message in SEPP
We now look at how the two participating SEPPs use the proposed N32 message format to provide e2e application layer security over N32.

[image: image2.emf]Create an empty

N32 message

Using message

protection policy,

rearrange data

into appropriate

partitions in the

N32 message

Execute protection

methods on

partitions

sSEPPrSEPP

Send the

protected

message over

N32

Receive HTTP

message from a

Network Function

Verify each update

by the

intermediary

Reassemble the

message

Forwards it to the

NF

Receives

protected

message

Perform Integrity

check on the

message part that

is e2e integrity

protected

Decrypt data that

is e2e encrypted

Pre-condition: The two SEPP (sSEPP and rSEPP) have mutually authenticated each other and have exchanged and negotiated among other things – algorithms to use for protection and cryptographic keys to use.

1). The sSEPP receives the HTTP message from the NF and does the following:

2.a) If the message is an HTTP request message:
The sSEPP creates Request_Line as defined in clause 4.1.3 and encrypts the contents of Request_Line with JWE. If necessary, for e.g. for routing, the sSEPP integrity-protects the authority part using JWS and encrypts the remaining parts of the request line with JWE.
2.b) If the message is an HTTP response message:

The creates Response_Line as defined in clause 4.1.3 and integrity-protects it with JWS.

3) The sSEPP creates HTTP_Headers and executes required protection method on each attribute within the HTTP_Headers object. This should typically be integrity protection with JWS. If there is any sensitive header, such as for e.g. the “Authorization” header field that’s used to carry OAuth access token, JWE is executed on that attribute to encrypt the value of the header.

4). The sSEPP creates the Payload JSON with its set of nested objects. It executes encryption operation (enc) to encrypt the complete encryptedPayload (and, if applicable, binaryPayload) JSON object.

5). The sSEPP executes e2eProt operation to integrity protect the complete e2eIntegrityProtectedPayload object.

6). For those JSON objects inside modifiableIntegrityProtectedPayload that require integrity protection but may also be modifiable by an intermediary, the procedure defined in clause 4.3.2.2.2.1 of the living document may be executed.

7). The protected message is then sent over N32 to the receiving SEPP (rSEPP).

8). If the validation of the integrity and authenticity of the intermediary updates, and their checking against the policy by the rSEPP were successful, the rSEPP re-assembles the HTTP Request or HTTP Response from the RequestLine or ResponseLine information, the Http Headers information, and th payload that includes e2e protected parts plus modified parts, and forwards it to the NF.
4.4
End to End illustration of the proposed scheme
In the example illustration shown below, AMF in the visited network is invoking a API service request on AUSF in the home network.

[image: image3.emf]AMFsSEPPrSEPPAUSFIPX1IPX2

HTTP Request Line

HTTP Header 1

HTTP Header 2

HTTP Body

{

IE1 = { }

IE2 = { }

IE3 = { }

IE4 = { }

}

HTTP Request Line

HTTP Header

HTTP Body

{

Request_Line = {

Method = { }

Scheme = { },

Authority = (},

PathAndQuery = { },

Protocol version = ()

}

HTTP_Headers = {

Hdr1 = JWS encoded Header 1

Hdr2 = JWE encoded Header 2

}

Payload = {

encrPayload = {

JWE encoded IE1, IE2

},

e2eIntegrityProtected = {

JWS encoded IE3

},

modifiableIntegrityProtected = {

partRequest of IE4

}

}

}

HTTP Request Line

HTTP Header 1

HTTP Header 2

HTTP Body

{

IE1 = { }

IE2 = { }

IE3 = { }

IE4 =

{IE4_modified}

}

IPX2

modified

IE4

Applies both

mods to get

the new msg

Protected

N32

message

Initial msg

from AMF

1234

HTTP Request Line

HTTP Header

HTTP Body

{

Request_Line = {

Method = { }

Scheme = { },

Authority = (},

PathAndQuery = { },

Protocol version = ()

}

HTTP_Headers = {

Hdr1 = JWS encoded Header 1

Hdr2 = JWE encoded Header 2

}

Payload = {

encrPayload = {

JWE encoded IE1, IE2

},

e2eIntegrityProtected = {

JWS encoded IE3

},

modifiableIntegrityProtected = {

partRequest of IE4

partRequest patch of IE4

}

}

}

The originating HTTP message from AMF has two headers and four attributes (IEs) in the payload.
- Header 1 needs e2e integrity protection

- Header 2 is sensitive (for e.g. Authorization header carrying access token) and needs confidentiality protection

- IE1 and IE2 needs confidentiality protection

- IE3 needs e2e integrity protection

- IE4 needs integrity protection with modification tracking
NOTE: Section 4.3.2.2.2.1 “Integrity protection based on JSON patch” provides a patch based mechanism to capture IPX updates with tracking capability.
5
Conclusion
The discussion paper presents a generic framework that enables SA3 to come up with a Rel-15 design that could further be enhanced in Rel-16 if SA3 decides to phase out Application layer security functionality in SEPP.
SA3 is requested to endorse the generic framework as the working model for further work on application layer security in SEPP.
A pCR will be planned for update to the living document depending on the SA3 decision.
_1584981556.vsd
Create an empty N32 message

Using message protection policy, rearrange data into appropriate partitions in the N32 message

Execute protection methods on partitions

Receive HTTP message from a Network Function

sSEPP

Verify each update by the intermediary

Reassemble the message

Perform Integrity check on the message part that is e2e integrity protected

Forwards it to the NF

Decrypt data that is e2e encrypted

rSEPP

Send the protected message over N32

Receives protected message

_1584990900.vsd
AMF

sSEPP

rSEPP

HTTP Request Line
HTTP Header 1
HTTP Header 2
HTTP Body
{
 IE1 = { }
 IE2 = { }
 IE3 = { }
 IE4 = { }
}

AUSF

IPX1

IPX2

HTTP Request Line
HTTP Header
HTTP Body
{
 Request_Line = {
 Method = { }
 Scheme = { },
 Authority = (},
 PathAndQuery = { },
 Protocol version = ()
 }
 HTTP_Headers = {
 Hdr1 = JWS encoded Header 1
 Hdr2 = JWE encoded Header 2
 }
 Payload = {
 encrPayload = {
 JWE encoded IE1, IE2
 },
 e2eIntegrityProtected = {
 JWS encoded IE3
 },
 modifiableIntegrityProtected = {
 partRequest of IE4
 }
 }
}

HTTP Request Line
HTTP Header
HTTP Body
{
 Request_Line = {
 Method = { }
 Scheme = { },
 Authority = (},
 PathAndQuery = { },
 Protocol version = ()
 }
 HTTP_Headers = {
 Hdr1 = JWS encoded Header 1
 Hdr2 = JWE encoded Header 2
 }
 Payload = {
 encrPayload = {
 JWE encoded IE1, IE2
 },
 e2eIntegrityProtected = {
 JWS encoded IE3
 },
 modifiableIntegrityProtected = {
 partRequest of IE4
 partRequest patch of IE4
 }
 }
}

HTTP Request Line
HTTP Header 1
HTTP Header 2
HTTP Body
{
 IE1 = { }
 IE2 = { }
 IE3 = { }
 IE4 =
 {IE4_modified}
}

Applies both mods to get the new msg

IPX2 modified
IE4

 Protected N32 message

Initial msg from AMF

1

2

3

4

_1584981249.vsd
HTTP Request Line
HTTP Header
HTTP Body
{
 Request_Line = {
 Method = { }
 Scheme = { },
 Authority = (},
 PathAndQuery = { },
 Protocol version = ()
 }
 HTTP_Headers = {
 Hdr1 = JWS encoded Header 1
 Hdr2 = JWE encoded Header 2
 }
 Payload = {
 encrPayload = {
 JWE encoded
 },
 e2eIntegrity = {
 JWS encoded
 },
 modifiableIntegrity = {
 JWS_Orig + JWS_patches
 }
 }
}

