Page 1

3GPP TSG-SA WG3 Meeting #91Bis
S3-181908
La Jolla (US), 21-25 May 2018

	CR-Form-v11.2

	CHANGE REQUEST

	

	
	33.501
	CR
	0225
	rev
	
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	HTTP Message rewriting into a N32 Message

	
	

	Source to WG:
	Nokia, NTT DOCOMO

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-05-12

	
	
	
	
	

	Category:
	B
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	SEPP to SEPP signaling over N32

	
	

	Summary of change:
	This CR provides a mechanism to generate a SEPP to SEPP N32 Message from the HTTP message received from a Network function. N32 Message is exchanged between two SEPPs

	
	

	Consequences if not approved:
	Missing structure to carry protected information on N32.

	
	

	Clauses affected:
	13.2.6 (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** Begin changes ****
13.2
Application layer security on the N32 interface
Editor’s Note: It is FFS how each JSON IE in the message is identified during parsing, and how each of these IEs need to be protected.
 It is FFS how binary data in the message payload is identified during parsing, and how it is protected.
Details of how sensitive contents in Request-URI are identified and protected is FFS.
Details of how sensitive information in HTTP Headers is identified and protected is FFS.
Details of how the receiving SEPP verifies the message is for FFS.
It is FFS how the receiving SEPP restores the original message from the received protected message.
Negotiation and agreement on the cipher suites between the two SEPPs is FFS.
Renegotiation of cipher suites between the two SEPPs is FFS
Key management aspects that includes key distribution and key agreement aspects are FFS.

Editor's Note: Solutions in this sub-clause may apply, in particular, when there may be intermediaries modifying messages, e.g. in roaming situations.

Editor's Note: This sub-clause is to include solutions satisfying the requirements on e2e security in clause 5.6. It is ffs whether the work performed by GSMA FASG DESS on e2e security for selected DIAMETER AVPs can be somehow utilized here. It is to also take into account solutions 10.1 and 10.2 in clause 5.10.4 of TR 33.899. When the solution(s) involve a Public Key Infrastructure then details of the use of the PKI are to be provided, e.g. by reference to TS 33.310.
13.2.6
JOSE-based protection of messages in SEPP
13.2.6.1
General

The internetwork interconnect allows secure communication between a consuming and a providing network function. Security is enabled by the security edge protection proxies of the consuming and prviding network, called cSEPP and pSEPP respectively. The SEPPs enforce network policies regarding application layer security. It ensures integrity and confidentiality protection for those elements on the application layer that need to be protected.

There is the assumption that there are interconnect providers between cSEPP and pSEPP. The interconnect provider the cSEPP's PLMN has a business relationship with is called cIPX, while the interconnect provider the pSEPP's PLMN has a business relationship with is called pIPX. There could be further interconnect providers, but they are assumed to be transparent and simply forward the communication.

pIPX and cIPX can offer services that require modifications of the messages transported over the interconnect interface. These modifications are appended to the message and reflect the desired modifications.

13.2.6.2
Message reformatting in SEPP

13.2.6.2.1
N32 Message payload structure
The received HTTP message from an internal Network Function is reformatted into a JSON object called N32 Message payload, consisting of the following parts:
a. The authenticatedBlock containing complete set of information that is integrity protected. It contains the following:

-
clearTextBlock – contains the complete original HTTP message.

-
encryptedBlock - containing all the attribute values requiring encryption.

-
metadata – contains SEPP generated information such as Request-Id, nexthop Id etc.
b. The modificationsBlock (modifiable integrity-protected) containing attribute values that require modifiable integrity protection
The N32 message payload is represented using the JSON syntax as follows and is transmitted on the N32 interface in the payload body of a SEPP to SEPP HTTP message.

[image: image1.emf]{

“authenticatedBlock” : {

“clearTextBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}

},

“HTTP_Headers” : {

“Hdr1”: {},

“Hdr2”:{“encBlockIdx”: 0}

},

“Payload” : {

“IE1” :{},

“IE2” :{“encBlockIdx”: 1},

“IE3” :{},

“IE4” :{}

}

},

“encryptedBlock” : [

Hdr2,

IE2

],

“metaData” : {

“Request_Id” : {},

“NextHop_Id” : {}

}

}

“modificationsBlock” : {

“Mod_chain”:[]

}

}

Figure 13.2.6.2.1-1 JSON representation of a reformatted HTTP message (i.e. N32 message payload)
13.2.6.2.1.1
authenticatedBlock
The authenticatedBlock contains the complete original HTTP message (including HTTP Request/Response line, HTTP headers and HTTP Payload) which is re-formatted into this block. This block represents information that is integrity protected. The block shall be represented as a single JSON structure consisting of the following JSON objects:
1) clearTextBlock – This is a JSON object that contains the non-encrypted portion of the original message and consists of the following objects:

1.a.1)
Request_Line - containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request OR

1.a.2)
Response_Line - containing an attribute for each of the HTTP version, the status code and the status message.
1.b) HTTP_Headers - All the headers of the request are put into a JSON object (map) called HTTP_Headers, with the header name as key and the header value as value. The path shall be put into an array, with one element per part of the path (i.e. per "directory") to enable individual encryption of the SUPI in the request line.
1.c) Payload – the JSON object that includes the payload body of the request. Each attribute or IE in the payload shall form a single entry in the Payload JSON object.
2) encryptedBlock – cf clause 13.2.6.2.1.2. If there is any attribute value that requires encryption, it shall be moved into the encryptedBlock JSON object, and the original value in the clearTextBlock is replaced by the index in the form {"encBlockIdx": <num>} where "num" is the index of the corresponding entry in the encryptedBlock array.
3) metaData – contains additional information for replay protection (Request_Id), Next Hop Identity (if available) etc.

13.2.6.2.1.2
encryptedBlock

The encryptedBlock is a JSON array that contains all the attribute values that require encryption. Attribute values can come from any part of the original HTTP message - request/response line, headers and payloads.

The JSON array shall contain one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to reference the protected value.

There is an association that connects each attribute in the encBlock with the original attribute in the original HTTP message (see clause 13.2.6.2.1.1). This is needed to reassemble the original message at the receiving SEPP. The association is the position of the attribute in this block.
13.2.6.2.1.3
modificationsBlock

The modificationsBlock contain attributes that require modifiable integrity protection. A JSON array is created in the miPBlock to represent modifications, where each entry records all modifications performed to the whole ipBlock.
The first entry in the modification chain is created by the cSEPP. Subsequent entries in the array are for modifications by intermediaries.
Each entry in the array contains a JSON object representing the desired modifications by the intermediaries. The JSON object contains the following:

a)
Operations - This is a JSON element with the syntax and semantic to capture the delta based on RFC 6902 (JSON Patch). If no patch is required, the operations element is empty.
b)
Identity - identity of the entity performing the modification.
c)
Next Hop Identity - which when present shall be the identity of the next hop (intermediary).

The first entry in the array, called as originalObject, represents the original message in the clearTextBlock (i.e., no original is stored in the array as first entry and operations JSON element is empty. Subsequent entries, called as patchRequest, contains the forward delta that only records the modifications made by the intermediary, in the Operations field.
Each entry is signed by the modifying entity using JWS[x].
13.2.6.2.2
Procedure

The following clause illustrates the message flow between the two SEPPs with modifications from cIPX and pIPX.

[image: image2.emf]cSEPPpSEPPpIPX

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and

protection using JOSE

3. Protected HTTP

Request

4. Append cIPX

modifications to miPBlock

in the message

5. Protected HTTP

Request

w/IPX modification

6. Append pIPX

modifications to miPBlock

in the message

7. Protected HTTP

Request

w/IPX modifications

8. Verify integrity of ipBlock.

Decrypt encBlock.

Verify IPX updates in

mipBlock and apply them.

Reassemble the HTTP

Request message.

9. Modified HTTP

Request

10. HTTP Response

11. Message rewriting and

protection using JOSE

12. Protected HTTP

Response

13. Append pIPX

modifications to miPBlock

in the message

14. Protected HTTP

Response

w/IPX modification

15. Append cIPX

modifications to miPBlock

in the message

16. Protected HTTP

Response

w/IPX modifications

18. Modified HTTP

Response

17. Verify message.

Reassemble the HTTP response.

Figure 13.2.6.2.2-1 Message flow between two SEPPs
1.
The cSEPP receives an HTTP request message from a network function.
2.
The cSEPP shall begin rewriting the HTTP Request message.

a. Generating blocks for integrity protected data and encrypted data, and protecting them:

The cSEPP encapsulates the HTTP request into a clearTextBlock containing the following child JSON objects:

-
Request_Line
-
HTTP_Headers with one element per header of the original request.

-
Payload that contains the message body of the original request.

For each attribute that requires e2e encryption, the attribute is copied into a encryptedBlock JSON object and
the attribute’s value in the clearTextBlock is replaced by the index of attribute value in the in the encryptedBlock.
A metadata block is created that contains a new Request Id generated by SEPP for this request and next hop identity (when available).

The clearTextBlock, encryptedBlock and metadata is encapsulated into the authenticatedBlock, which represents the complete set of information that needs to be integrity protected.

The cSEPP protects authenticatedBlock as per clause 13.2.6.3. This results in a single JWE or JWS object representing protected ipBlock.
b. Generating modifiable integrity block for attributes that may be modified by the intermediaries
If there are attribute(s) that require modifiable integrity protection, an array (Mod_chain) is created in a top level modificationsBlock JSON object to store modifications by the intermediaries.

The cSEPP creates a new originalObject JSON object. Since there is nothing modified by the cSEPP, the
operations field is empty. The cSEPP shall include its own identity in the originalObject JSON object.

Editor's note: it is FFS whether: The vSEPP shall include the first intermediary’s ID in the originalObject. This authorizes the first intermediary to perform modifications.

Editor’s Note: Only authorized intermediaries are allowed to perform modifications. Authorization mechanism is FFS

The cSEPP shall integrity protect the complete originalObject using JWS and insert it as the first entry of the Mod_chain array.
c. Additional binary payloads in multipart messages from NF are represented as separate root-level binaryPayload object
d. Generating payload for the SEPP to SEPP HTTP message

The JWE/JWS object representing protected authenticatedBlock (part a), miPBlock array containing JWS protected originalObject (part b), and binaryPayload (part c) are included as payload in a new HTTP message.
3.
The cSEPP shall use HTTP POST to send the HTTP message to the first intermediary (visited network's IPX provider).

4.
The first intermediary (e.g. visited network's IPX provider) creates a new patchRequest JSON object. The operations JSON element contains its modifications as per RFC 6902[y]. The intermediary includes its own identity in the Identity field of the patchRequest element.

The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array of the modificationsBlock.
5.
The first intermediary sends the modified HTTP message request to the second intermediary (home network's IPX) as in step 3.

6.
The second intermediary determines further modifications required are captured in a new patchRequest object. Further processing is like in step 4. The intermediary executes JWS on the patchRequest JSON object with its signature and inserts it into the next available entry in the Mod_chain array.
7.
The second intermediary sends the modified HTTP message to pSEPP as in step 3.

Note: The behaviour of the intermediaries is not normative, but the hSEPP assumes that behaviour for processing the resulting request.

8.
The pSEPP receives the message and does the following:

-
It checks the integrity of the authenticatedBlock.
-
If successfully verified, the pEPP decrypts the encryptedBlock.
-

The pSEPP updates the clearTextBlock with the values from the decrypted encBlock by replacing the references to the encryptedBlock, which are stored in the clearTextBlock, by the referenced decrypted values from the encryptedBlock.
-
It then verifies IPX provider updates of the attributes in the mIpBlock. It checks whether the modifications performed by the intermediaries were permitted by policy.

-
The modified values of the attributes are updated in the clearTextBlock in order.
The pSEPP then re-assembles the full HTTP Request or HTTP Response from the contents of the clearTextBlock.
9.
The pSEPP shall send the HTTP request resulting from step 8 to the home network's NF.

10.-18.
These steps are analogous to steps 1.-9.
**** End of changes ***

_1587819440.vsd
{
 “authenticatedBlock” : {
 “clearTextBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1”: {},
	 “Hdr2”:{“encBlockIdx”: 0}
 },
 “Payload” : {
	 “IE1” :{},
 	 “IE2” :{“encBlockIdx”: 1},
	 “IE3” :{},
 	 “IE4” :{}
 }
 },
 “encryptedBlock” : [
 Hdr2,
 IE2
],
 “metaData” : {
	 “Request_Id” : {},
	 “NextHop_Id” : {}
 }
 }
 “modificationsBlock” : {
	“Mod_chain”:[]
 }
}

_1587808798.vsd
pSEPP

pIPX

cSEPP

cIPX

cNF

pNF

1. HTTP Request

2. Message rewriting and protection using JOSE

3. Protected HTTP
Request

4. Append cIPX modifications to miPBlock in the message

5. Protected HTTP Request
w/IPX modification

6. Append pIPX modifications to miPBlock in the message

7. Protected HTTP Request
w/IPX modifications

8. Verify integrity of ipBlock.
Decrypt encBlock.
Verify IPX updates in mipBlock and apply them.
Reassemble the HTTP Request message.

9. Modified HTTP
Request

10. HTTP Response

11. Message rewriting and protection using JOSE

12. Protected HTTP
Response

13. Append pIPX modifications to miPBlock in the message

14. Protected HTTP Response
w/IPX modification

15. Append cIPX modifications to miPBlock in the message

16. Protected HTTP Response
w/IPX modifications

18. Modified HTTP Response

17. Verify message.
Reassemble the HTTP response.

