3GPP TSG SA WG3 (Security) Meeting #91Bis
S3-181891
21-25 May 2018, La Jolla (US)
revision of S3-18xabc
Source:
Nokia
Title:
SEPP to SEPP N32 message structure
Document for:
Approval

Agenda Item:
7.2.13.1
1
Decision/action requested

This document proposes a N32 message structure for optimized protection of the HTTP messages
2
References

[1]
S3-181508 – Report of evening session of SA3#91
[2]
S3-181509 – Way forward for Interconnect (N32) security
3
Rationale

This paper discusses a possible solution for rewriting HTTP message into a SEPP to SEPP N32 message exchanged on the N32 interface.

The solution proposes an optimized encryption solution (based on JWE) that:

a) creates a single container (encBlock) for data that needs confidentiality protection
b) another container for the full message (ipBlock). Instead of duplicating values that’s in the encBlock, ipBlock will have references to the encBlock for those parameters whose value needs confidentiality protection. Doing this will also help in reconstructing the full message once decryption is performed on encBlock at the receiving end).

This allows for us to use:

a) JWE on encBlock (instead of repeating JWE on each JSON object separately) and we get both confidentiality and integrity protection on all values in encBlock and

b) JWS on ipBlock (minus those values which are in encBlock) – We obtain integrity protection on all values in ipBlock.
4
Detailed proposal

4.1
Background
The HTTP protocol message includes three protocol elements:

1) Either a request line or a response line. The request line consists of 1) an HTTP method, 2) a request URI that may contain an authority (host and port), a hierarchical part, a query and a fragment part, and 3) a protocol identifier. The response line consists of a protocol identifier, a status code and a status text

2) A set of HTTP headers

3) An optional payload body, formatted as JSON.

4.2
Message rewriting into a SEPP-SEPP N32 message
A N32 message is created from the original message and that contains the following parts:

a) encBlock (encrypted block)

b) ipBlock (integrity-protected block)

c) mIpBlock (modifications to integrity-protected block)

The reformatted message is represented using the JSON syntax as follows and is transmitted in the payload body of the HTTP protocol.

[image: image1.emf]{

“encBlock” : [

Hdr2,

IE2

],

“iPBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}

},

“HTTP_Headers” : {

“Hdr1” : {},

“Hdr2” : {“encBlockRef”: 0}

}

“Payload” : {

“IE1” : {},

“IE2” : {“encBlockRef”: 1},

“IE3” : {},

“IE4” : {}

}

}

miPBlock = {

“Mod_chain”:[]

}

}

Proposed JSON representation of a reformatted HTTP message (i.e. N32 message)

a) encBlock

· Contains all the attribute values that require encryption. Note: attribute values can be structured.

Attribute values can come from any part of the original HTTP message - request/response line, headers and payloads.

· There is an association that connects each attribute in the encBlock with the original attribute in the ipBlock. This is needed to reassemble the original message at the receiving SEPP.

· Association could be for e.g. position of the attribute in this block (if this block is an array), a pointer (if this object is a structured object) or a token (if the keys in this object are tokens). Details in ipBlock (b)

· Option a) JSON object consisting of key/value pairs, one key/value pair per attribute value that needs encryption. The value of each key/value pair is the value of the attribute to be protected, and the key is a token that can be used to refence that value.
· Option b) (Non-uniform) JSON array, one array entry per attribute value that needs encryption. Each array entry represents the value of the attribute to be protected, and the index in the array is used to refence the protected value.

b) ipBlock

· Complete original HTTP message (including HTTP Request/Response line, HTTP headers and HTTP Payload) is re-formatted into this block. The block is represented as a single JSON structure.

· If there is any attribute value that requires encryption, it is moved from this block into the encBlock JSON object, and replaced in this block by a reference (encBlockRef, see options 1,2,3 below). References can be any of the following options:

· Option 1: index.

· In the IP block, replace the value (that is stored in an array entry in the encBlock) by the following structure: {"encBlockIdx": <num>} where "num" is a number, starting at zero which is the index of the corresponding entry in the encBlock array.

· Option 2: token.

· In the IP block, replace the value (that is stored in an entry in a list of key/value pairs in the encBlock) by the following structure: {"encBlockToken": "<token>"} where "token" is a string, corresponding to the value of a key in the encBlock.

· Option 3: Pointer (e.g. JSON pointer) into the encBlock.

NOTE: Option 1 (Index) gives no known plaintext (as there is no shared text between encBlock and ipBlock). Option 2 (Token) does as it is in both the encBlock and in ipBlock in clear text. Option 3 (Pointer) is subject to how we model it.
Option 1 clearly avoids known plain text attacks and is hence the preferred option for how the association is made between the ipBlock and the corresponding object in the encBlock. Option

c) mIpBlock

· If some attributes require modifiable integrity protection, one or more arrays are created in the mIpBlock to represent modifications.

· How the information is split into arrays is a design parameter of the method.

· Possible solutions are

· one array (storing the modifications of the whole ipBlock) and

· three arrays (one array for each of Request/Response line, headers, payload)

· The simplest method uses just a single array of which each entry records all modifications performed to the whole ipBlock.

· Additional methods may use multiple arrays, e.g. one for each part of the ipBlock (three Request/Response line, headers, payload), or even multiple arrays for the multiple IEs in the payload.

· If a delta format (Patch format) is used for the array entries, the preferred method is just a single array

· First entry in the modification chain is created by the sending SEPP, representing the modifiable attributes in the original structure:

a) full object structure that has the original value of the modifiable attributes, with all other attributes emptied. The corresponding entry in ipBlock for all the modifiable attributes are emptied so as not to duplicate the object. This defines a format for the information of the original JSON object in the modification chain.

b) JSON object or array that stores the original values of the modifiable attributes, following the same principle as for encBlock. The corresponding entries in ipBlock for all the modifiable attributes are replaced by references (the same way as referencing encBlock entries). This defines a format for the information of the original JSON object in the modification chain.

c) Implicitly, the first entry in the modification chain is the ipBlock (i.e., no original is stored in the modification chain as first entry). This is an improvement over the other two, which works without storing explicitly an original version in the modification chain.

· Subsequent entries in the modification chain are for modifications by intermediaries. Each modifying block either duplicates the full original object in the array or captures a delta (JSON Patch, JSON Merge Patch.

4.3
Example flow
In this part we show an example flow of a HTTP message that requires all three forms of protection – e2e integrity protection, e2e encryption and modifiable integrity protection.

Legend:

sSEPP: sending SEPP

rSEPP: receiving SEPP

1. The sSEPP receives the HTTP message from the NF and does the following:

1. a) Create an N32 message

Following steps are executed in creating an N32 message by rewriting data from the received HTTP message.
1.a.1) Process HTTP Request/Response line of the message

1.a.1.a) If the message is an HTTP request message:

· The sSEPP encapsulates the HTTP request line into a JSON object called Request_Line containing an attribute each for the method, the optional authority part of the URI, the remaining parts of the URI and the protocol of the request.

NOTE 1: Deeper structuring that allows for breaking out individual parameters from the hierarchy part /query part of the URI, and enables selective protection of those parts (for e.g. SUPI), is also possible (not shown in this paper).
1.a.1.b) If the message is an HTTP response message:

· An HTTP response line is included in a Response_Line object that contains an attribute for each of the HTTP version, the status code and the status message.
1.a.2) The sSEPP encapsulates all the headers of the request into a JSON object (map) called HTTP_Headers, with the header name as key and the header value as value.

1.a.3) The sSEPP includes the payload body of the request in a JSON object called Payload.

1.a.4) The SEPP then wraps the three JSON structures created above in 1.a.1), 1.a.2) and 1.a.3) into a top level JSON object called ipBlock.

1.a.5) For each attribute that requires e2e encryption, the attribute is copied into a top level encBlock JSON object and the attribute’s value in the ipBlock is replaced by a reference (encBlockRef) to the attribute value in the in the encBlock.

1.a.6) If there are attribute(s) that require modifiable integrity protection, an array is created in a top level mIpBlock JSON object to store modifications. The sSEPP may create a first entry in the mIpBlock array to represent its own modifications, which may include an empty set of modifications. In this case it just points to the original value in the ipBlock.

1.a.7) Additional binary payloads in multipart messages from NF are represented as separate binaryPayload object.

1.a.8) The three blocks – encBlock, ipBlock and mIpBlock, form the HTTP payload of the N32 message exchanged between two SEPPs.
1.b) Protecting the N32 message

Following steps are executed in protecting the N32 message:
1. b.1) The sSEPP executes encryption operation (JWE) to encrypt the complete encBlock (and, if applicable, binaryPayload) JSON object.

1.b.2) The sSEPP integrity protects the complete ipBlock object by executing JWS from the entries in the ipBlock.

1.b.3) The sSEPP integrity protects the mIpBlock by executing JWS on the first entry in the mIpBlock, if applicable.

2) The sSEPP forwards the protected N32 message (from 1.b) to the rSEPP.

3) Authorized IPX providers update the modifiable attributes, store the modifications in the mIpBlock, and each protect their own modifications with JWS.

4) The rSEPP receives the N32 message and does the following:

4.1) It re-assembles the HTTP Request or HTTP Response from the protected N32 message as follows:

a. It checks the integrity of the ipBlock.

b. If successfully verified, the rSEPP decrypts the encBlock.

c. The rSEPP updates the ipBlock with the values from the decrypted encBlock by replacing the references to the encBlock, which are stored in the ipBlock, by the referenced decrypted values from the encBlock.

d. It then verifies IPX provider updates of the attributes in the mIpBlock.

e. The modified values of the attributes are updated in the ipBlock

NOTE: Applying the modifications from mIpBlock to ipBlock, and restoring the values from encBlock to ipBlock can be performed in any order.

4.2) The contents of the ipBlock is used to reassemble the full HTTP message, which is then forwarded to the target network function.

4.4
llustration of a protected N32 message between two SEPPs

The following figure depicts how the original HTTP request message is transformed into a protected N32 message as it traverses from an AMF in the visited network via the sSEPP at the edge of the visited network and over the N32 interface with one IPX provider that modifies IE4 in the message. The receiving SEPP in the home network verifies the received message, and reassembles the HTTP request message with the modified IE4, before forwarding it to the AUSF.

[image: image2.emf]AMF sSEPP rSEPP AUSF IPX1

HTTP Request Line

HTTP Header 1

HTTP Header 2

HTTP Body

{

IE1 = { }

IE2 = { }

IE3 = { }

IE4 = { }

}

HTTP Request Line

HTTP Header 1

HTTP Header 2

HTTP Body

{

IE1 = { }

IE2 = { }

IE3 = { }

IE4 =

{IE4_modified}

}

IPX1

modified

IE4

Applies

modification

to get the

new msg

Protected

N32

message

Initial msg

from AMF

1 2 3 4

HTTP Request Line

HTTP Header

HTTP Body

{

“encBlock” : [

Hdr2,

IE2

],

“iPBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}

},

“HTTP_Headers” : {

“Hdr1” : {},

“Hdr2” : {“encBlockRef”: 0}

}

“Payload” : {

“IE1” : {},

“IE2” : {“encBlockRef”: 1},

“IE3” : {},

“IE4” : {}

}

}

mIpBlock = {

“Mod_chain”:[]

}

}

HTTP Request Line

HTTP Header

HTTP Body

{

“encBlock” : [

Hdr2,

IE2

],

“iPBlock” : {

“Request_Line” : {

“Method” : {},

“Scheme” : {},

“Authority” : (},

“Path” : {},

“Query&Fragment” : {},

“Protocol version” : {}

},

“HTTP_Headers” : {

“Hdr1” : {},

“Hdr2” : {“encBlockRef”: 0}

}

“Payload” : {

“IE1” : {},

“IE2” : {“encBlockRef”: 1},

“IE3” : {},

“IE4” : {}

}

}

mIpBlock = {

“Mod_chain”:[patch_IPX1]

}

}

1) Initial message from AMF:

· HTTP Header 1, and IE2 need e2e encryption

· IE4 is a modifiable attribute.

· Rest needs e2e integrity protection

2) Protected N32 message from the sending SEPP

· ipBlock JSON object is integrity protected

· encBlock is an array of JSON objects that require encryption.

· mIpBlock contains a single array of patch updates

· Attributes in HTTP_Headers and Payload that require encryption are moved to encBlock. Values of these attributes in the ipBlock are replaced by references pointing to the index in the encBlock

· mIpBlock’s initial content is empty, representing an unmodified ipBlock.

3) IPX1 updates IE4

· IPX1 creates patch_IPX1 for its update and appends it to Mod_chain.

4) rSEPP reassembles the message and sends it to the NF

· The receiving SEPP verifies integrity of the ipBlock
· It decrypts the contents in encBlock and places the decrypted values back into the ipBlock.
· It verifies the update from IPX4 and updates the original value in the ipBlock
· It reassembles the complete HTTP message from the updated ipBlock
· It forwards the message to the target Network function.
_1587371263.vsd
{
 “encBlock” : [
 Hdr2,
 IE2
],
 “iPBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1” : {},
	 “Hdr2” : {“encBlockRef”: 0}
 }
 “Payload” : {
	 “IE1” : {},
 	 “IE2” : {“encBlockRef”: 1},
	 “IE3” : {},
 	 “IE4” : {}
 }
 }
 miPBlock = {
 “Mod_chain”:[]
 }
}

_1587371264.vsd
AMF

sSEPP

rSEPP

HTTP Request Line
HTTP Header 1
HTTP Header 2
HTTP Body
{
 IE1 = { }
 IE2 = { }
 IE3 = { }
 IE4 = { }
}

AUSF

IPX1

HTTP Request Line
HTTP Header
HTTP Body
{
 “encBlock” : [
 Hdr2,
 IE2
],
 “iPBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1” : {},
	 “Hdr2” : {“encBlockRef”: 0}
 }
 “Payload” : {
	 “IE1” : {},
 	 “IE2” : {“encBlockRef”: 1},
	 “IE3” : {},
 	 “IE4” : {}
 }
 }
 mIpBlock = {
 “Mod_chain”:[]
 }
}

HTTP Request Line
HTTP Header
HTTP Body
{
 “encBlock” : [
 Hdr2,
 IE2
],
 “iPBlock” : {
 “Request_Line” : {
 	 “Method” : {},
 	 “Scheme” : {},
	 “Authority” : (},
	 “Path” : {},
 “Query&Fragment” : {},
	 “Protocol version” : {}
 },
 “HTTP_Headers” : {
	 “Hdr1” : {},
	 “Hdr2” : {“encBlockRef”: 0}
 }
 “Payload” : {
	 “IE1” : {},
 	 “IE2” : {“encBlockRef”: 1},
	 “IE3” : {},
 	 “IE4” : {}
 }
 }
 mIpBlock = {
 “Mod_chain”:[patch_IPX1]
 }
}

HTTP Request Line
HTTP Header 1
HTTP Header 2
HTTP Body
{
 IE1 = { }
 IE2 = { }
 IE3 = { }
 IE4 =
 {IE4_modified}
}

Applies modification to get the new msg

IPX1 modified
IE4

 Protected N32 message

Initial msg from AMF

1

2

3

4

