Page 1

3GPP TSG-SA WG3 Meeting #91Bis
S3-181709
La Jolla (US), 21-25 May 2018

 revision of S3-181495
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	TS 33.501
	CR
	0162
	rev
	2
	Current version:
	15.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	X
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	IV generation for ECIES

	
	

	Source to WG:
	Apple Inc, Ericsson

	Source to TSG:
	S3

	
	

	Work item code:
	5GS_Ph1-SEC
	
	Date:
	2018-05-21

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	In SECG SEC1, the ICB for AES-CTR-mode is set to 0x0000000000000000. Given the block size of AES is 128bit, even though the ephemeral keys are only used for a single encryption, the probability of a same key appearing twice after 2^64 encryption is approximately ½. As pointed out in the study on 256-bit algorithms, a fixed ICB enables an adversary to find a key-ciphertext match with higher probability when performing a known-plaintext attack. In the case of ECIES the attack enables an adversary that knows part of the plaintext to recover the full plaintext. The attack complexity (time, memory, probability) will not be practical, but lower that the expected 128-bit security level. This should be mitigated before ECIES is deployed.

	
	

	Summary of change:
	This CR gives a method generating an ICB used in AES-CTR-mode, In this way, the probability of (enckey, ICB)-collisions is decreased significantly.

	
	

	Consequences if not approved:
	SUPI leakage by semi-brutal force attack in the known- and chosen plaintext attack models in some conditions.The theoretical complexity of recovering one of many SUPIs is less less than the expected 2^128.

	
	

	Clauses affected:
	C.3

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*** BEGIN CHANGES ***
*** First change, based on S3-181495 ***

C.3
Elliptic Curve Integrated Encryption Scheme (ECIES)

C.3.1
General

The use of ECIES for concealment of the SUPI shall adhere to the SECG specifications [29] and [30]. Processing on UE side and home network side are described in high level in clauses C.3.2 and C.3.3.

C.3.2
Processing on UE side

The ECIES scheme shall be implemented such that for computing a fresh SUCI, the UE shall use the provisioned public key of the home network and freshly generated ECC (elliptic curve cryptography) ephemeral public/private key pair according to the ECIES parameters provisioned by home network. The processing on UE side shall be done according to the encryption operation defined in [29] with the following changes to Section 3.8 and step 5 and 6 of Section 5.1.3.
· generate keying data K of length enckeylen + icblen + mackeylen
· Parse the leftmost enckeylen octets of K as an encryption key EK, the middle icblen octets of K as an ICB, and
the rightmost mackeylen octets of K as a MAC key MK.
The final output shall be the concatenation of the ECC ephemeral public key, the ciphertext value, the MAC tag value, and any other parameters, if applicable.

OTE:
The reason for mentioning "any other parameter, if applicable" in the final output is to allow cases, e.g. to enable the sender to send additional sign indication when point compression is used.

Editor's Note: The format and encoding of the final output needs to be finalized by CT WG1.

The Figure C.3.2-1 illustrates the UE's steps.

[image: image1.emf]Eph.

private key

1> Eph. key pair

generation

2> Key

agreement

Eph.

shared key

3> Key

derivation

4> Symmetric

encryption

Eph.

public key

Public key

of HN

Plaintext

block

Cipher-

text value

Eph. enc.

key, ICB

Final output = Eph. public key || Ciphertext || MAC tag [|| any other parameter]

Eph.

mac key

MAC-tag

value

5> MAC

function

Figure C.3.2-1: Encryption based on ECIES at UE

C.3.3
Processing on home network side

The ECIES scheme shall be implemented such that for deconcealing a SUCI, the home network shall use the received ECC ephemeral public key of the UE and the private key of the home network. The processing on home network side shall be done according to the decryption operation defined in [29] with the following changes to Section 3.8 and step 6 and 7 of Section 5.1.4.
· generate keying data K of length enckeylen + icblen + mackeylen
· Parse the leftmost enckeylen octets of K as an encryption key EK, the middle icblen octets of K as an ICB, and
the rightmost mackeylen octets of K as a MAC key MK.

NOTE:
Unlike the UE, the home network does not need to perform a fresh ephemeral key pair generation for each decryption. How often the home network generates new public/private key pair and how the public key is provisioned to the UE are out of the scope of this clause.

The Figure C.3.3-1 illustrates the home network's steps.

[image: image3.emf]1> Key

agreement

Eph.

shared key

2> Key

derivation

Eph. public

key of UE

Private

key of HN

3> Symmetric

decryption

Plaintext

block

Cipher-

text value

Eph. dec.

key, ICB

Eph.

mac key

MAC-tag

value

4> MAC

function

(verif.)

Figure C.3.3-1: Decryption based on ECIES at home network

C.3.4
ECIES profiles
C.3.4.0
General
Unless otherwise stated, the ECIES profiles follow the terminology and processing specified in SECG version 2 [29] and [30]. The profiles shall use "named curves" over prime fields.
Profile A shall use its own standardized processing for key generation (section 6 of RFC 7748 [46]) and shared secret calculation (section 5 of RFC 7748 [46]). The Diffie-Hellman primitive X25519 (section 5 of RFC 7748 [46]) takes two random octet strings as input, decodes them as scalar and coordinate, performs multiplication, and encodes the result as an octet string. The shared secret output octet string from X25519 shall be used as the input Z in the ECIES KDF (section 3.6.1 of [29]).
Profile B shall use point compression to save overhead and shall use the Elliptic Curve Cofactor Diffie-Hellman Primitive (section 3.3.2 of [29]) to enable future addition of profiles with cofactor h ≠ 1. For curves with cofactor h = 1 the two primitives (section 3.3.1 and 3.3.2 of [29]) are equal.

The profiles shall not use backwards compatibility mode (therefore are not compatible with version 1 of SECG).

C.3.4.1
Profile <A>

The ME and SIDF shall implement this profile. The ECIES parameters for this profile shall be the following:

-
EC domain parameters

: Curve25519 [46]

-
EC Diffie-Hellman primitive

: X25519 [46]

-
point compression

: N/A

-
KDF

: ANSI-X9.63-KDF [29]
-
Hash

: SHA-256
-
SharedInfo1

: [image: image6.png]

(the ephemeral public key octet string – see [29] section 5.1.3)
-
MAC

: HMAC–SHA-256

-
mackeylen

: 256

-
maclen

: 64
-
SharedInfo2

: the empty string
-
ENC

: AES–128 in CTR mode

-
enckeylen

: 128

-
icblen

: 16 octets (128 bits)
-
backwards compatibility mode

: false
Editor's Note: It is FFS to contact other WGs (like CT1) or wait for their progress before finalizing the identifier, and size of the null-scheme. The maximum size should cover both the IMSI and NAI formats.

C.3.4.3
Profile

The ME and SIDF shall implement this profile. The ECIES parameters for this profile shall be the following:

-
EC domain parameters

: secp256r1 [30]

-
EC Diffie-Hellman primitive

: Elliptic Curve Cofactor Diffie-Hellman Primitive [29]

-
point compression

: true

-
KDF

: ANSI-X9.63-KDF [29]

-
Hash

: SHA-256

-
SharedInfo1

: [image: image8.png]

 (the ephemeral public key octet string – see [29] section 5.1.3)

-
MAC

: HMAC–SHA-256

-
mackeylen

: 256

-
maclen

: 64

-
SharedInfo2

: the empty string

-
ENC

: AES–128 in CTR mode

-
enckeylen

: 128

-
icblen

: 16 octets (128 bits)
-
backwards compatibility mode

: false
*** END OF CHANGES ***

Eph. private key
1> Eph. key pair
generation
2> Key
agreement
Eph. shared key
3> Key
derivation
4> Symmetric
encryption
Eph. public key
Public key of HN
Plaintext block
Cipher-text value
Eph. enc. key, ICB
Final output = Eph. public key || Ciphertext || MAC tag [|| any other parameter]
Eph. mac key
MAC-tag value
5> MAC function

1> Key
agreement
Eph. shared key
2> Key
derivation
Eph. public key of UE
Private key of HN
3> Symmetric
decryption
Plaintext block
Cipher-text value
Eph. dec. key, ICB
Eph. mac key
MAC-tag value
4> MAC function (verif.)

1> Key
agreement
Eph. shared key
2> Key
derivation
Eph. public key of UE
Private key of HN
Eph. master shared key
6> Symmetric
encryption
Plain-text block
Cipher-text value
Eph. dec. key
3> MSBs
4> LSBs
Eph. mac key
MAC-tag value
5> MAC function (verif.)

