3GPP TSG SA WG3 (Security) Meeting #85
S3-161857
7-11 November 2016 Santa Cruz de Tenerife (Spain)
revision of S3-13abcd
Source:
KPN
Title:
FS_NSA Small Data – Optimized Re-authentication mechanism
Document for:
Approval
Agenda Item:
8.6.14
Work Item / Release:
FS_NSA / Rel-14
Abstract of the contribution: In this pCR we propose a mechanism to optimize re-authentication of the UE by sending the challenge to the UE at the end of a session and allowing the UE to respond by the next session. This addresses key issue #14.4
1. Introduction
Key issue #14.4 Small Data context retention has two requirements, of which the second reads: “It should be possible for the network to challenge and verify the UE periodically and re-authenticate the UE for the small data service”. In this proposal, we propose a mechanism that allows the network to so. The mechanism is based on EPS AKA, but may be extended to other authentication mechanisms as well.

2. Problem description and proposal
The problem area relates to constraint devices that only transfer small data every once in a while in a single message of at most 1K and receives at most one return message per time. In order to keep the overhead low, the solutions currently discussed in SA2 exclude setting up specific bearers and reduce signalling to a minimum. From a security point of view, some signalling will be necessary to:

· Set up the initial security context

· Refresh the security context.

In this pCR, we propose a way to avoid additional messages for refreshing the security context. For setting up the security context an EPS AKA run is assumed.

EPS AKA requires only two messages to be exchanged between the UE and the network in order to authenticate and establish the key. In the first one, the UE receives the RAND, AUTN and the KSI and the second one is the reply from the UE with the RES. However, in practise, there is also the attach message from the UE before the AKA and a secure mode command from the network after the key has been established. Whereas using four messages to set up the UE initially for Small Data transfer is acceptable, repeating this for every AKA is unnecessary and inefficient.

In the proposal below, which is about re-authentication, we re-use the efficient EPS AKA mechanism in a way that it can be piggy backed on the messages that the UE exchanges with the network by sending the challenge (RAND) in the one session and the RES in the next session of the UE. That way, we avoid additional signalling and we make use of the proven security of EPS AKA.

NOTE: the solution assumes EPS AKA for the time being, but ultimately aims at any AKA solution for which n=1 according to figure 5.2.4.7.2.4-1.
3. Proposal

*** Beginning of change ***
5.14.4.#Z
Solution #14.#Z: Using EPS AKA for efficient re-authentication

5.14.4.#Z.1
Introduction

This solution addresses key issue #14.4 (section 5.14.3.4) by using EPS AKA for re-authentication.
5.14.4.#Z.2
Solution details

5.14.4.#Z.2.1
Assumptions

This solution assumes that the UE and the network use something like EPS AKA (or a NextGen version thereof that is similar to EPS AKA) for authentication and key agreement.

Editor’s Note: This solution will have to be revisited once a decision has been made for the AKA for NextGen.

This solution assumes that in between sessions, the UE can keep keys stored

This solution assumes that only once in a while the network and UE re-authenticate.

This solution assumes that the UE does not send more than one message at the time and receives at most one message from the network.

5.14.4.#Z.2.2
High level overview

This solution works as follows:

1. For the initial setup, the UE and the network use a standard EPS AKA or NextGen equivalent thereof;

2. For subsequent data transfers, the UE will retrieve the security context from its storage, and uses the corresponding keys to encrypt and/or integrity protect the user data.

3. After some time, the network decides to change the keys and includes a challenge and authentication token (RAND and AUTN in EPS) in the next downlink message. Upon reception thereof, the UE refreshes the security context and stores the new security context alongside the old one.

4. For the next data transfer, the UE retrieves the newest security context, and uses the corresponding keys to encrypt and/or integrity protect the user data.
5.14.4.#Z.2.3
Detailed Description

In the figure below, we show the various steps in more detail. In the figure a Small Data Service (SDS) is introduced, which could be a specific type of gateway or could even be collocated with the NextGen version of the MMF or the SCMF or SEAF. The security functions SCMF and SEAF have be combined into one node because their message flows are undefined at the moment of writing and so have the AUSF and ARPF. They are referred to as SCMF/SEAF and AUSF/ARPF in the following text.

1. For the initial setup, the UE and the network use a standard EPS AKA; the network agrees to offer the small data service to the UE. The UE and network use the keys derived in this session for the data exchange. After the data transfer, the UE will go into idle mode and store the security context. The SDS will obtain a user plane key (UP key), which could be an encryption key, an integrity key or the two keys from the SCMF/SEAF for handling the user plane data.

2. For the subsequent data transfers, the UE will retrieve the security context from its storage, use the corresponding keys to encrypt and/or integrity protect the user data. The SDS will upon reception of the data from the UE request a user plane key from the SCMF/SEAF, which in turn checks whether the security context is still valid, if so, the SCMF/SEAF provides the UP Key to the SDS. The SDS handles the user plane data further by sending it to the appropriate server [not shown] and forwards a reply in the downlink message to the UE.

3. Shows the case where the check at the SCMF/SEAF fails. Upon this failure, the SCMF/SEAF will request a fresh AV from the AUSF/ARPF by indicating to that a re-authentication is necessary. The fresh AV will be an EPS AKA AV or an authentication vector for the AKA mechanism that is used. For EPS AKA it will contain at least a RAND, AUTN, and XRES. The SCMF/SEAF forwards the RAND and AUTN to the SDS together with the UP Key based on the active security context. After having forwarded the RAND and AUTN, the SCMF/SEAF will calculate the new security context, store it together with the XRES and the active security context for the UE. The SDS will forward the RAND and AUTN together with the downlink data to the UE. The UE will also calculate the new security context, the RES and store both the old and new security context.

4. For the next data transfer, the UE retrieves the newest security context, and uses the corresponding keys to encrypt and/or integrity protect the user data. It will include the RES in the message to the SDS, which the SDS will in turn forward to the SCMF/SEAF. Upon reception of the RES, the SCMF/SEAF will compare the RES to the XRES and if they match, the SCMF will remove the old security context and make the new one active and reset the timer. It will calculate the UP Key and forward it to the SDS. The SDS will forward the downlink data to the UE and include a flag that states that the new security context is accepted. Upon reception of this flag, the UE will delete the old security context (and keep the newest one).

[image: image1]
Figure 5.14.4.#Z.2.3-1
Message flow showing steps 1 and 2

[image: image2]
Figure 5.14.4.#Z.2.3-2
Message flow showing steps 3 and 4
5.14.4.#Z.3
Evaluation
This solution enables the network to efficiently re-authenticate the UE by:

· Re-using EPS AKA as authentication and key agreement mechanism;

· And allowing the UE to send the response to the challenge (RES) upon next data transfer.
Editor’s Note: The evaluation should be revisited once a NextGen authentication protocol is agreed that is different than EPS AKA.
*** End of change ***
NG-UE

gNB

SCMF/SEAF

AUSF/ARPF

SDS

AKA run between NG-UE and the network

UE Idle, stores security context

1

Uplink data

Uplink data

Downlink data

UE Idle, stores security context

UE Active, retrieves security context

2

Repeats a number of times, until timer expires.

Stores security context and sets timer

Downlink data

UP Key

UP Key

Checks timer

Obtain key

NG-UE

gNB

SCMF/SEAF

AUSF/ARPF

SDS

UE Idle, calculates and stores new security context

Uplink data

Downlink data, RAND, AUTN

UE Active, retrieves security context

UP Key, RAND, AUTN

Timer expired

Obtain key

3

Re-auth needed

New AV

Calculate and store new security context

UE Idle, stores security context

Uplink data + RES

Downlink data, Flag

UE Active, retrieves security context + RES

UP Key

Checks RES

Sets timer

Obtain key + RES

4

