3GPP TSG SA WG3 (Security) Adhoc Meeting on FS_NSA
S3-161322
27 – 29 September, 2016, San Diego, USA
Source:
Huawei, HiSilicon
Title:
Security Key Refresh Triggered by UE
Document for:
Approval

Agenda Item:
4.3
Work Item / Release:
TR33.899/ Rel-14
Abstract of the contribution: This contribution presents a key refresh solution triggered by UE.
1. Introduction
In 2/3/4G network key refresh and reauthentication are entirely up to the visited network. The only way for UE to require key refreshing is to release the connection and then reconnect to trigger a reauthentication. Key Issue #3.2 points that in NextGen network, main threat arises when a UE roams onto a visited network has a lax security policy, allowing the same radio interface keys to remain in use for a long time. Therefore, Key Issue #3.2 requires that UE should have some ability to trigger a refresh of security keys.
The goal of this proposal is to give a strategy for UE to trigger key refreshing. Including the trigger policy and the mechanism to refresh keys.
2. pCR
**** Start of Change ****
5.3.4.X

Solution #3.X: Security Key Refresh Triggered by UE

5.3.4.X.1

Introduction
This solution addresses Key Issue #3.2.

5.3.4.X.2
Solution details

UE is equipped with a key refreshing policy. The policy indicate the risk level of the visited network, different risk level will trigger the refresh of different keys. Four risk levels are considered in the policy: High, Middle, Low, None. Three key refresh scenarios are introduced. These include reauthentication, main key refresh and CP/UP key refresh. When the risk is High, the UE will trigger reauthentication, and then refresh all the interface keys. When the risk is Middle, the UE will trigger main key refresh. CP/UP key will be refreshed if the risk is Low, and no key will be refreshed if the risk is None.

More specifically, detailed scenarios of different risk levels are discussed here.

· Once UE moves to a visited network with lax security policy. With high probability, the main key will be compromised if the key is used for a long time. In this situation, the risk is High, UE will trigger reauthentication periodically, to keep the main key fresh.

· In a visited network, if the key is used for a long time, the attackers recover the air interface key from the UE or AN. In such situation, the UE will trigger the main key refresh key procedure to refresh all the air interface keys.

· In a visited network, the attackers monitor the air interface of the UE and try to figure out the air interface key from the data transimitted. In this case, the risk is Low, and UE needs to refresh the air interface keys periodically.

More details are as follows.

· Reauthentication
If the UE roams to a visited network with High risk. UE will trigger the reauthencation procedure and refresh all the interface key.

[image: image1.emf]UE

CP-AU

KeyRefresh Request

[ReAuthentication]

Authentication

Note: The policy also defines a refresh period time X, which means if UE stay in the same visited network all the time, the key refresh procedure will be automatically triggered every time X.

Note: the difference of the reauthentication here between 2/3/4G is that the authentication is initiated by UE and do not need to drop the connection.
· Main Key Refresh
If the UE roams to a visited network with Middle risk, UE will trigger the main key refresh procedure and refresh all the derived keys from it. The main key here means Kng in the NextGen key hierarchy or Kasme in 4G. There are two ways to refresh the main key. One is based on DH key agreement and the other is based on key chain.
a) The DH based key refresh procedure is according to solution #3.1 and described as follows.

[image: image2.emf]UE CP_AU

1. KeyRefresh Request

[RefreshMainKey, Flag=0]

2. Generate DH private key A

PRIV

and derive DH public key A

PUB

,

3. Message1(A

PUB

, MAC)

5. Message 2(B

PUB

, MAC)

6. Decode B

PUB

, derive a symmetric key

K

DH

, derive new main key K’_main with

K

DH

 and K_main

4. Decode A

PUB

, generate DH private key B

PRIV

 and derive DH

public key B

PUB

, derive a symmetric key K

DH

, derive new

main key K’_main with K

DH

 and K_main

1. UE sends a KeyRefresh Request to CP-AU and contains indication RefreshMainKey and Flag=0 to use DH agreement protocol.
2. CP-AU generates a DH tuple APUB and APRIV.
3. CP-AU computes the MAC of APUB using the previous main key K_main, and sends APUB together with the MAC to UE.
4. UE first generates a DH tuple BPUB and BPRIV, then checks the MAC of APUB and computes the DH key KDH. Finally, it refreshes the main key as K’_main = KDF(K_main, KDH).
5. UE computes the MAC of BPUB using the previous main key K_main, and sends BPUB together with the MAC to CP-AU.

6. CP-AU first checks the MAC of APUB, and then computes the DH key KDH. Finally it refreshes the key as K’_main=KDF(K_main, KDH).

b) In the chain based procedure, UE and CP-AU maintain a counter MainKeyChainCounter, and the procedure is as follows.

[image: image3.emf]UE

CP-AU

1. KeyRefresh Request

[RefreshMainKey, Flag=1]

2. K’_main=KDF(K_main, MainKeyChainCounter)

MainKeyChainCounter ++

2. K’_main=KDF(K_main, MainKeyChainCounter)

MainKeyChainCounter ++

3. KeyRefresh Response

1. UE sends a KeyRefresh Request to CP-AU and contains indication RefreshMainKey and Flag=1 to use chain based method.
2. UE and CP-AU both refresh the main key as K’_main = KDF(K_main, MainKeyChainCounter), and the counter will add 1 index.
3. CP-AU returns a KeyRefresh Response message to UE.

· CP/UP key refresh

If the UE roams to a visited network with Low risk, UE will trigger the CP/UP key refresh procedure and refresh all the derived keys from it. There are two ways to refresh the CP/UP key. One is based on DH key agreement and the other is based on key chain.
a) The DH based key agreement protocol is according to solution #3 and is similar to the main key refresh procedure except using the K_CP/K_UP, as follows.
1. The CP case:

[image: image4.emf]UE CP_AU

1. KeyRefresh Request

[RefreshCPKey, Flag=0]

2. Generate DH private key A

PRIV

and derive DH public key A

PUB

,

3. Message1(A

PUB

, MAC)

5. Message 2(B

PUB

, MAC)

6. Decode B

PUB

, derive a symmetric key

K

DH

, derive new main key K’_CP with

K

DH

 and K_CP

4. Decode A

PUB

, generate DH private key B

PRIV

 and derive DH

public key B

PUB

, derive a symmetric key K

DH

, derive new

main key K’_CP with K

DH

 and K_CP

2. The UP case:

[image: image5.emf]UE CP_AU

1. KeyRefresh Request

[RefreshUPKey, Flag=0]

2. Generate DH private key A

PRIV

and derive DH public key A

PUB

,

3. Message1(A

PUB

, MAC)

5. Message 2(B

PUB

, MAC)

6. Decode B

PUB

, derive a symmetric key

K

DH

, derive new main key K’_UP with

K

DH

 and K_UP

4. Decode A

PUB

, generate DH private key B

PRIV

 and derive DH

public key B

PUB

, derive a symmetric key K

DH

, derive new

main key K’_UP with K

DH

 and K_UP

b) The chain based protocol is similar to the main key refresh procedure except using K_CP, CPKeyChainCounter and K_UP, UPKeyChainCounter, as follow.

1. The CP case:

[image: image6.emf]UE

CP-AU

1. KeyRefresh Request

[RefreshCPKey, Flag=1]

2. K’_CP=KDF(K_CP, CPKeyChainCounter)

CPKeyChainCounter ++

2. K’_CP=KDF(K_CP, CPKeyChainCounter)

CPKeyChainCounter ++

3. KeyRefresh Response

2. The UP case:

[image: image7.emf]UE

CP-AU

KeyRefresh Request

[RefreshUPKey, Flag=1]

K’_UP=KDF(K_UP, UPKeyChainCounter)

UPKeyChainCounter ++

K’_UP=KDF(K_UP, UPKeyChainCounter)

UPKeyChainCounter ++

KeyRefresh Response

5.3.4.X.3

Solution Evaluation

tba
**** End of Change ****

UE
CP-AU
1. KeyRefresh Request [RefreshMainKey, Flag=1]
2. K’_main=KDF(K_main, MainKeyChainCounter)
MainKeyChainCounter ++
2. K’_main=KDF(K_main, MainKeyChainCounter)
MainKeyChainCounter ++
3. KeyRefresh Response

UE
CP_AU
1. KeyRefresh Request
[RefreshCPKey, Flag=0]
2. Generate DH private key APRIV and derive DH public key APUB,
3. Message1(APUB, MAC)
5. Message 2(BPUB, MAC)
6. Decode BPUB, derive a symmetric key KDH, derive new main key K’_CP with KDH and K_CP
4. Decode APUB, generate DH private key BPRIV and derive DH public key BPUB, derive a symmetric key KDH, derive new main key K’_CP with KDH and K_CP

UE
CP_AU
1. KeyRefresh Request
[RefreshUPKey, Flag=0]
2. Generate DH private key APRIV and derive DH public key APUB,
3. Message1(APUB, MAC)
5. Message 2(BPUB, MAC)
6. Decode BPUB, derive a symmetric key KDH, derive new main key K’_UP with KDH and K_UP
4. Decode APUB, generate DH private key BPRIV and derive DH public key BPUB, derive a symmetric key KDH, derive new main key K’_UP with KDH and K_UP

UE
CP-AU
KeyRefresh Request [RefreshUPKey, Flag=1]
K’_UP=KDF(K_UP, UPKeyChainCounter)
UPKeyChainCounter ++
K’_UP=KDF(K_UP, UPKeyChainCounter)
UPKeyChainCounter ++
KeyRefresh Response

UE
CP_AU
1. KeyRefresh Request
[RefreshMainKey, Flag=0]
2. Generate DH private key APRIV and derive DH public key APUB,
3. Message1(APUB, MAC)
5. Message 2(BPUB, MAC)
6. Decode BPUB, derive a symmetric key KDH, derive new main key K’_main with KDH and K_main
4. Decode APUB, generate DH private key BPRIV and derive DH public key BPUB, derive a symmetric key KDH, derive new main key K’_main with KDH and K_main

UE
CP-AU
1. KeyRefresh Request [RefreshCPKey, Flag=1]
2. K’_CP=KDF(K_CP, CPKeyChainCounter)
CPKeyChainCounter ++
2. K’_CP=KDF(K_CP, CPKeyChainCounter)
CPKeyChainCounter ++
3. KeyRefresh Response

UE
CP-AU
KeyRefresh Request [ReAuthentication]
Authentication

