[image: image1.wmf]COUNT || FRESH |

| M E S

S A G E || DIRECTION || 1 || 0 … 0

KASUMI

KASUMI

KASUMI

IK

IK

IK

IK

KASUMI

KASUMI

IK

Å

 KM

MAC-I (left 32-bits)

PS

0

PS

1

PS

2

PS

BLOCKS-1

3GPP TSG SA WG3 (Security) Meeting #81

S3-152453
9-13 November 2015 Anaheim(US)

Source:
ETSI SAGE

Title:
New GPRS algorithms for CIoT
Document for:
Discussion / Information

ETSI SAGE
SAGE (15) 04
1 November 2015
Title:
New GPRS algorithms for CIoT
Response to:
S3-152072 “LS on enhanced GPRS security algorithms for Cellular IoT”
Source:
ETSI SAGE

To:
3GPP SA3
Cc:

Contact Person:

Name:
Steve Babbage

Tel. Number:
+ 44 7787 153932

E-mail Address:
steve.babbage@vodafone.com

Attachments:
None
SA3 has asked SAGE about how new GIA4 (integrity), GEA5 (encryption) and GIA5 (integrity) algorithms might be specified.

SAGE agrees with the principle of specifying GIA4 similar to UIA1, based on Kasumi. Basing it on any of the other existing GEAx algorithms would make little sense.
SAGE recommends (as already suggested by SA3) that GEA5 and GIA5 should be similar to UIA2 and UIA2, based on SNOW 3G. We believe that this is the best choice in order to have well studied, well understood, well trusted, well implemented algorithms designed as a resilient alternative to Kasumi-based algorithms.
Action: We invite SA3 to tell us when the final specifications of the new algorithms will be needed. We will need clear guidance on what the input and output values of the algorithms will be.

Tentative algorithm designs

SA3 has not yet asked SAGE for exact algorithm specifications, but here we sketch what the new algorithms might look like.

SA3 has not yet specified what the input parameters of an integrity algorithm would be, or what output size would be required for an integrity tag. For the purposes of this sketch we assume that the inputs are the same as for the encryption algorithms – the key, the message, a 32-bit INPUT and a single DIRECTION bit – and that the integrity tag will be a 32-bit MAC. The designs can be adapted without difficulty to accommodate different parameters.
The sketches below should be taken as indicative only, and not a final specification. We welcome comments about them.

Draft design of GEA5

In the UEA2 specification, the SNOW 3G initialisation vector is constructed as follows:
IV3
=
COUNT-C[0] || COUNT-C[1] || COUNT-C[2] || … || COUNT-C[31]

IV2
=
BEARER[0] || BEARER[1] || … || BEARER[4] || DIRECTION[0] || 0 || … || 0

IV1
=
COUNT-C[0] || COUNT-C[1] || COUNT-C[2] || … || COUNT-C[31]
IV0
=
BEARER[0] || BEARER[1] || … || BEARER[4] || DIRECTION[0] || 0 || … || 0
For GEA5 we will probably specify that the SNOW 3G initialisation vector should be constructed along the following lines:
IV3
=
INPUT[0] || INPUT[1] || INPUT[2] || … || INPUT[31]

IV2
=
00000 || DIRECTION[0] || 0 || … || 0

IV1
=
(INPUT[0] || INPUT[1] || INPUT[2] || … || INPUT[31]) (CONST1

IV0
=
(00000] || DIRECTION[0] || 0 || … || 0) (CONST2
where CONST1 and CONST2 are 32-bit constants, at least one of which is non-zero. This ensures that a GEA5 IV can never be the same as a UEA2 IV, hence providing robust cryptographic separation between the algorithms. In other respects, GEA5 can be identical to UEA2.
Draft design of GIA5

In the UIA2 specification, the SNOW 3G initialisation vector is constructed as follows:

IV3
=
COUNT-I[0] || COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31]

IV2
=
FRESH[0] || FRESH[1] || FRESH[2] ||… || FRESH[31]
IV1
=
DIRECTION[1] (COUNT-I[0] || COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31]
IV0
=
FRESH[0] || FRESH[1] || FRESH[2] ||… || FRESH[31]
For GIA5 we will probably specify that the SNOW 3G initialisation vector should be constructed along the following lines:

IV3
=
COUNT-I[0] || COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31]

IV2
=
INPUT[0] || INPUT[1] || INPUT[2] ||… || INPUT[31]
IV1
=
(DIRECTION[1] (COUNT-I[0] || COUNT-I[1] || COUNT-I[2] || … || COUNT-I[31]) (CONST3

IV0
=
(INPUT[0] || INPUT[1] || INPUT[2] ||… || INPUT[31]) (CONST4
where CONST3 and CONST4 are 32-bit constants, at least one of which is non-zero (and if CONST3 is non-zero, then it is not only the first bit that is non-zero). This ensures that a GIA5 IV can never be the same as a UIA2 IV, hence providing robust cryptographic separation between the algorithms. In other respects, GIA5 can be identical to UIA2.

Draft design of GIA4
The UIA1 algorithm looks like this:

[image: image3.png]COUNT | INPUT

MESSAGE

DIRECTION ' 1/0...0

v

v

;

vy

1K — P

PS, PS; 2 PSzrocks
> > :
A 4 A 4 A 4
KASUMI IK P KASUMI K —P|KASUMI | K P KASUMI
_
A2 >t 4

K © KM —PKASUMI

v

MAC (left 32-bits)

CONST5S

We will probably specify that GIA4 looks like this, with a non-zero constant CONST5 XORed onto the input of the final KASUMI block. We may also use a different value for the key modifier KM – we are still considering this.

[image: image2]

_1003900395.doc

COUNT || FRESH || M E S S A G E || DIRECTION || 1 || 0 … 0

PS2

PS1

PS0

KASUMI

KASUMI

IK

KASUMI

IK

IK

KASUMI

IK

KASUMI

IK (KM

MAC-I (left 32-bits)

PSBLOCKS-1

