Page 1

3GPP TSG-SA3 Meeting #79
S3-151249
Nanjing,China 20-24 April 2015

Revision of S3-15xyz
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	33.303
	CR
	0062
	rev
	-
	Current version:
	12.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Correction of hash input parameters for proximity request in EPC level discovery

	
	

	Source to WG:
	Huawei, HiSilicon

	Source to TSG:
	S3

	
	

	Work item code:
	ProSe
	
	Date:
	2015-04-02

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	In clause 6.3.1.2 of TS33.303, it states in step3 that ”…… the signature AS_signature of the cryptographic hash of the concatenation of the ALUID_A, the ALUID_B, the authorized operations and the timestamp value……”, It means the input string into the Hash consist of ALUID_A, ALUID_B, authorized operations and timestamp value.

However, in clause 6.3.1.4, the input string to the hash function is the concatenation of proximity request parameters and their respective lengths, in which the parameters are P0 = EPUID_A, P1 = ALUID_A, P2 = ALUID_B and P3 = Timestamp.
So there is a inconsistency between these two statements.

	
	

	Summary of change:
	Make the input parameters into the Hash consist of EPUID_A, ALUID_A, ALUID_B, authorized operations and the timestamp value.

	
	

	Consequences if not approved:
	There is a inconsistency between two statements in TS33.303.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*************************************Start of first change************************************

6.3.1.2
Application Server-signed proximity request

UE A doesn't sign the proximity request sent to its ProSe Function A, but trusts the Application Server to control the authorization of the proximity request sent on its behalf.

The authorization criteria can be based on detection mechanisms of very high volume of incoming proximity requests from a ProSe Function that doesn't match with the frequency usage of the ProSe Application by the users, or it can be based on a presence detection mechanism over the PC1 interface.

ProSe Function A requests an authorization to the Application Server for each proximity request it shall transmit over the PC2 interface. The Application Server returns parameters which specify which operations are authorized (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…).

ProSe Function B is assured of the authenticity of the proximity request received from ProSe Function A by verifying the signature with a verification key from the Application Server.

The token verification key is fetched over the PC2 interface between the ProSe Function B and the Application Server.

The procedure below further defines the Proximity Request procedure in clause 5.5.5 of TS 23.303 [2] to support authenticity of the request.

[image: image2.emf]UE A ProSe Function A App Server ProSe Function B

1.Proximity Requset

(EPUID_A,Application ID,ALUID_A,ALUID_B,

Window,Range, A’S loc,[WLLAN ind.]

2.Map Request

(ALUID_A,ALUID_B)

3.Map Respose

(EPU ID_B,PFID_B,AS_signature(timestamp,

ALUID_A,ALUID_B,Authorized_operations),

Timestamp,

Authorized_operations,[Cer Key_AS])

4.Proximity Request(EPUID_B,EPUID_A,

window,A’s loc,[WLAN ind.],ALUID_A,ALUID_B,Application ID, timestamp,

AS_signature(timestamp,EPUID_A, ALUID_A,ALUID_B,

Authorized_operations),authorized_operations,[CerKey_AS])

5.VerifKey Request

(Application ID)

6.VerifKey Response

(VerifKey_Application ID)

7. Verify

the signature

Figure 6.3.1.2-1: Application Server-signed Proximity Request

1. Same as Step 1 of procedure in clause 5.5.5 of TS 23.303 [2]

2. Same as Step 2 of procedure in clause 5.5.5 of TS 23.303 [2]

3. The Application Server returns as part of the Map Response following additional data: the authorized operations (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…), a timestamp, the signature AS_signature of the cryptographic hash of the concatenation of the EPUID_A, the ALUID_A, the ALUID_B, the authorized operations and the timestamp value, and optionally the associated certificate CertKey_AS of Application Server's verification key.

4. ProSe Function A sends as part of the Proximity Request to ProSe Function B the following additional data: the AS_signature, EPUID_A, EPUID_B, ALUID_A, ALUID_B, the timestamp, the authorized operations, the Application ID and optionally the CertKey_AS's certificate.

5. If the CertKey_AS's certificate wasn't part of the Proximity request, or that either the CertKey_AS's certificate or verification key wasn't stored in internal memory, then ProSe Function B sends a Verification Key fetching requests to Application Server's verification key (identifiable with the Application ID).

6. The Application Server returns the verification key.

7. If the verification of signature from the Application Server is successful then the procedure continues the procedure from step 5 in clause 5.5.5 of TS 23.303 [2].
*************************************End of first change*************************************

************************************Start of second change*********************************

6.3.1.4
Proximity request hash input format

The input to the hash function shall be encoded as specified in Annex B.1 of TS 33.220 [5] and shall consist of the concatenation of proximity request parameters and their respective lengths:

FC = 0x00

P0 = EPUID_A

L0 = Length of P0 value

P1 = ALUID_A

L1 = Length of P1 value

P2 = ALUID_B

L2 = Length of P2 value

P3 = Timestamp. It shall use the date-time format as defined in clause 5.6 of RFC 3339 [18] and shall be encoded according to Annex B.2.1.2 of TS 33.220 [5]

L3 = Length of P3 value
P4 = Authorized operations

L4 = Length of P4 value
NOTE:
The key derivation function defined in Annex B.1 of TS 33.220 [5] is not used, therefore the FC value should only be considered as a dummy value.
************************************End of second change***********************************

_1470654569.vsd
�

�

1.Proximity Requset
(EPUID_A,Application ID,ALUID_A,ALUID_B,
Window,Range, A’S loc,[WLLAN ind.]

UE A

ProSe Function A

App Server

ProSe Function B

2.Map Request
(ALUID_A,ALUID_B)

3.Map Respose
(EPU ID_B,PFID_B,AS_signature(timestamp,
ALUID_A,ALUID_B,Authorized_operations),
Timestamp,
Authorized_operations,[Cer Key_AS])

4.Proximity Request(EPUID_B,EPUID_A,
window,A’s loc,[WLAN ind.],ALUID_A,ALUID_B,Application ID, timestamp,
AS_signature(timestamp,ALUID_A,ALUID_B,
Authorized_operations),authorized_operations,[CerKey_AS])

5.VerifKey Request
(Application ID)

6.VerifKey Response
(VerifKey_Application ID)

7. Verify
the signature

_1489498771.vsd
�

�

1.Proximity Requset
(EPUID_A,Application ID,ALUID_A,ALUID_B,
Window,Range, A’S loc,[WLLAN ind.]

UE A

ProSe Function A

App Server

ProSe Function B

2.Map Request
(ALUID_A,ALUID_B)

3.Map Respose
(EPU ID_B,PFID_B,AS_signature(timestamp,
ALUID_A,ALUID_B,Authorized_operations),
Timestamp,
Authorized_operations,[Cer Key_AS])

4.Proximity Request(EPUID_B,EPUID_A,
window,A’s loc,[WLAN ind.],ALUID_A,ALUID_B,Application ID, timestamp,
AS_signature(timestamp,EPUID_A, ALUID_A,ALUID_B,
Authorized_operations),authorized_operations,[CerKey_AS])

5.VerifKey Request
(Application ID)

6.VerifKey Response
(VerifKey_Application ID)

7. Verify
the signature

