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******************************** BEGIN CHANGE ************************************
6.3.1.2
ProSe Function-signed proximity request

UE A doesn't sign the proximity request sent to its ProSe Function A, but trusts the Application Server to control the authorization of the proximity request sent on its behalf.  

The authorization criteria can be based on detection mechanisms of very high volume of incoming proximity requests from a ProSe Function that doesn't match with the frequency usage of the ProSe Application by the users, or it can be based on a presence detection mechanism over the PC1 interface.

ProSe Function A requests an authorization to the Application Server for each proximity request it shall transmit over the PC2 interface. The Application Server creates a verification key Kv, specifically for this request session, and returns parameters which specify which operations are authorized (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…), the newly created verification key Kv. This Verification key will be valid as long as the EPUID_A and EPUID_B are associated in the discovery procedure during the active window (specified by the UE). Once the window closes, the Verification key Kv for this discovery pair shall be purged by the Application Server and ProSe functions involved in the proximity discovery.
ProSe Function B is assured of the authenticity of the proximity request received from ProSe Function A by verifying the signature with a verification key obtained from the Application Server. 

The token verification key is fetched over the PC2 interface between the ProSe Function B and the Application Server.

The procedure below further defines the Proximity Request procedure in clause 5.5.5 of TS 23.303 [2] to support authenticity of the request.
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Figure 6.3.1.2-1: ProSe Function-signed Proximity Request

1. Same as Step 1 of procedure in clause 5.5.5 of TS 23.303 [2]
2. Same as Step 2 of procedure in clause 5.5.5 of TS 23.303 [2] with the addition of the Window Range parameter which indicates to the Application Server that outside of this window it should not deliver this key to the requesting ProSe Fn. 

3. The Application Server returns as part of the Map Response following additional data: the authorized operations (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…),  the verification key Kv specifically created for this instance of the Proximity Request from the UE, Kv_Lifetime, and Kv_ID. The verification key Kv’s validity is represented by the parameter “Kv_Lifetime” which shall be less than or equal to the duration of the window as requested by the UE..

4. ProSe Function A creates a signature of the cryptographic hash of the concatenation of the ALUID_A, the ALUID_B, the authorized operations and the timestamp. It then  sends Proximity Request to ProSe Function B with the following additional data: the signature, ALUID_A, ALUID_B, the timestamp, the authorized operations, the Kv_ID, the Kv_Lifetime and the Application ID . Every request sent by ProSe Function A to ProSe Function B is different from prior requests, as new timestamp is used to generate fresh signature for every request.
5. The ProSe Function B sends a Verification Key Request to fetch the verification key (identifiable with the Application ID, ALUID_A and ALUID_B, the Kv_ID). This step is not repeated for subsequent requests received from ProSe Function A for the same set of Application Id, ALUID_A, ALUID_B, the Kv_ID, within the duration of the Kv_Lifetime.
6. The Application Server returns the verification key that is currently active for this pair of ALUID_A and ALUID_B involved in discovery procedure. The Application Server also provides the Kv_Lifetime to indicate how long this key is valid for.
7. If the verification of signature from the Application Server is successful then ProSe Function B requests location information of UE B as detailed  in step 5 in clause 5.5.5 of TS 23.303 [2]. 
8. The ProSe Function B acknowledges the proximity request to ProSe Function A and provides UE B’s current location (if known). This message is signed by verification key Kv.
9. The ProSe Function A verifies the integrity of the received message. If the verification of the signature is successful, then the procedure continues from step 8 in clause 5.5.5 of TS 23.303[2].
10. If UE B is not yet in proximity to UE A, but is expected to enter proximity within the requested time window, ProSe Function A would send a new Proxmity Request message to ProSe Function B to get the latest location of UE B. ProSe Function A would re-sign the message with a new value for the timestamp. This ensures protection against replay attacks of Proximity Request messages.

11. If ProSe Function A determines that UE B is unlikely to enter proximity to UE A within the requested window, it will cancel the request as specified in clause 5.5.9 of TS 23.303[2].
**********************************END CHANGE *************************************
