Page 1

3GPP TSG-SA3 Meeting #79
S3-151232
Nanjing, China, April 20 – 24, 2015

revision of S3-15xabc
	CR-Form-v11

	CHANGE REQUEST

	

	
	33.303
	CR
	0061
	rev
	-
	Current version:
	12.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	A mechanism for replay protection of Proxmity Request messages in EPC-level discovery

	
	

	Source to WG:
	Alcatel-Lucent

	Source to TSG:
	S3

	
	

	Work item code:
	ProSe
	
	Date:
	2015-04-20

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	For EPC-level discovery, replay protection for the Proxmity Request message is specified in section 6.3.1.2 – “Application Server-signed Proximity Request”. The current solution specified in this section is based on using Application Server’s private key to digitally sign ALUID_A, ALUID_B etc, which is then used by the source ProSe Function to demonstrate the authenticity of the Proximity request it sends to the target ProSe Function. The target ProSe Function verifies the signature by using Application Server’s public key.

This scheme is not sufficient to detect replay of Proxmitiy Request messages by the impersonator at the target ProSe Function. According to the description of the feature in SA2, within the period of window, ProSe Fn A will send multiple messages to ProSe Fn B. Multiple Proximity Requests for 1) to get UE B location, 2) (optionally) to update UE A location, or 3) to Cancel Proximity Request, all within the duration of window.
App Server’s signature would be identical for the pair of ALUIDs engaged in Proxmity Request procedure. Therefore, requests originating from a source ProSe function or its impersonator and destined to a specific ProSe function, would always result in the same signature when App Server’s private key is used to digitally sign the request. This allows for the attacker to replay Proximity Request message to the target ProSe Function without being recognized by the target ProSe Function, and obtain the target’s location within a specified lifetime window or even to cancel Proximity Request.

	
	

	Summary of change:
	This CR proposes using a freshly signed Proximity request sent by the source ProSe Function, based on a randomly-created key which is valid within a specfied window. This key is created and provided to the source ProSe Function by the App Server as part of the Map Request/Map Response exchange. The target ProSe Function verifies the signature by fetching the corresponding key from the App Server with the VerifKey Request/VerifKey Response exchange. Source ProSe Function is trusted with the parameter associations for the duration of ‘life time’ only. Within the life time, every request sent by source ProSe Function to target ProSe Function is different from prior requests, as new timestamp is used to generate fresh signature for every request.

	
	

	Consequences if not approved:
	Insecure specification for EPC-level discovery.

	
	

	Clauses affected:
	6.3.1.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

******************************** BEGIN CHANGE ************************************
6.3.1.2
ProSe Function-signed proximity request

UE A doesn't sign the proximity request sent to its ProSe Function A, but trusts the Application Server to control the authorization of the proximity request sent on its behalf.

The authorization criteria can be based on detection mechanisms of very high volume of incoming proximity requests from a ProSe Function that doesn't match with the frequency usage of the ProSe Application by the users, or it can be based on a presence detection mechanism over the PC1 interface.

ProSe Function A requests an authorization to the Application Server for each proximity request it shall transmit over the PC2 interface. The Application Server creates a verification key Kv, specifically for this request session, and returns parameters which specify which operations are authorized (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…), the newly created verification key Kv. This Verification key will be valid as long as the EPUID_A and EPUID_B are associated in the discovery procedure during the active window (specified by the UE). Once the window closes, the Verification key Kv for this discovery pair shall be purged by the Application Server and ProSe functions involved in the proximity discovery.
ProSe Function B is assured of the authenticity of the proximity request received from ProSe Function A by verifying the signature with a verification key obtained from the Application Server.

The token verification key is fetched over the PC2 interface between the ProSe Function B and the Application Server.

The procedure below further defines the Proximity Request procedure in clause 5.5.5 of TS 23.303 [2] to support authenticity of the request.

[image: image1.emf]
Figure 6.3.1.2-1: ProSe Function-signed Proximity Request

1. Same as Step 1 of procedure in clause 5.5.5 of TS 23.303 [2]
2. Same as Step 2 of procedure in clause 5.5.5 of TS 23.303 [2] with the addition of the Window Range parameter which indicates to the Application Server that outside of this window it should not deliver this key to the requesting ProSe Fn.

3. The Application Server returns as part of the Map Response following additional data: the authorized operations (e.g. authorized to send only one request, authorized to send X requests until particular date, etc…), the verification key Kv specifically created for this instance of the Proximity Request from the UE, Kv_Lifetime, and Kv_ID. The verification key Kv’s validity is represented by the parameter “Kv_Lifetime” which shall be less than or equal to the duration of the window as requested by the UE..

4. ProSe Function A creates a signature of the cryptographic hash of the concatenation of the ALUID_A, the ALUID_B, the authorized operations and the timestamp. It then sends Proximity Request to ProSe Function B with the following additional data: the signature, ALUID_A, ALUID_B, the timestamp, the authorized operations, the Kv_ID, the Kv_Lifetime and the Application ID . Every request sent by ProSe Function A to ProSe Function B is different from prior requests, as new timestamp is used to generate fresh signature for every request.
5. The ProSe Function B sends a Verification Key Request to fetch the verification key (identifiable with the Application ID, ALUID_A and ALUID_B, the Kv_ID). This step is not repeated for subsequent requests received from ProSe Function A for the same set of Application Id, ALUID_A, ALUID_B, the Kv_ID, within the duration of the Kv_Lifetime.
6. The Application Server returns the verification key that is currently active for this pair of ALUID_A and ALUID_B involved in discovery procedure. The Application Server also provides the Kv_Lifetime to indicate how long this key is valid for.
7. If the verification of signature from the Application Server is successful then ProSe Function B requests location information of UE B as detailed in step 5 in clause 5.5.5 of TS 23.303 [2].
8. The ProSe Function B acknowledges the proximity request to ProSe Function A and provides UE B’s current location (if known). This message is signed by verification key Kv.
9. The ProSe Function A verifies the integrity of the received message. If the verification of the signature is successful, then the procedure continues from step 8 in clause 5.5.5 of TS 23.303[2].
10. If UE B is not yet in proximity to UE A, but is expected to enter proximity within the requested time window, ProSe Function A would send a new Proxmity Request message to ProSe Function B to get the latest location of UE B. ProSe Function A would re-sign the message with a new value for the timestamp. This ensures protection against replay attacks of Proximity Request messages.

11. If ProSe Function A determines that UE B is unlikely to enter proximity to UE A within the requested window, it will cancel the request as specified in clause 5.5.9 of TS 23.303[2].
**********************************END CHANGE *************************************
