3GPP TSG-SA WG3 Meeting #79
S3-151379
Nanjing, P.R. China, 20 – 24 April 2015

revision of S3-15abcd

Source:
Ericsson

Title:
TR 33.895: Resolving editor's notes on local user authentication
Document for:
Discussion and decision

Agenda Item:
8.1
Work Item / Release:
FS_Int_Sec / Rel-13

Abstract of the contribution:
1 Introduction
Clause 7.4 includes a proposal for functional architecture of an authorization function within the UE to perform the local user authentication. Such authorization function and mechanisms for providing authentication or authorization policies from the Service Provider/NAF to the authorization function in the UE or mechanisms for negotiating local user authentication capabilities are regarded to be out of scope of 3GPP.

There is a related SA1 requirement, which states that "The 3GPP SSO Service may support mechanisms to ensure the presence of the registered user of the data application to satisfy policies of the Data Application Provider." However, the requirement is about the 3GPP SSO Service and Data Application Provider, but not about the UE. Furthermore, such policies can be coordinated between the 3GPP SSO Service and Data Application Provider with out of scope mechanisms.

Therefore further specification work in 3GPP is not envisaged for this functionality, and the editor's notes in 7.4.2.2, 7.4.2.3 and 7.4.3 are proposed to be removed.
2 pCR

BEGIN CHANGES

7.4.2.2
GBA_ME-based solution

By local user authentication, the GAA server can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application "Bank.com" can use GBA authentication.

If and only if the GAA server has locally authenticated the user, the GAA server derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the GAA server is a trusted element in the terminal which, in addition to performing bootstrapping and deriving NAF keys for applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authentication is needed, the GAA server derives the regular NAF keys. This approach avoids the burden and complexity of syncing the user authentication credentials, e.g. a PIN, with the network.

The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image1.emf]6. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

3. Get NAF keys (Nonce-UI)

2. Ua application answer (auth

challenge, Nonce-UI)

7. Response (Ks_NAF-UI)

8. Calculate authentication

resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI,

...)

11. Derive Ks_NAF-UI =

KDF(Ks, Nonce-UI, ...)

12. NAF key response (Ks_NAF-UI)

13. Verify auth resp with

Ks_NAF-UI

14. Ok

4, 5. Local user authentication and

authorization

Figure 7.4.2.2.-1: Using User consent for GBA_ME

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a request for NAF keys with NonceUI, the local GAA server requests for local user’s authentication and authorization credentials (e.g. a PIN, UID/password, etc.) to derive the NAF keys for this GAA client.

5. The local user provides authentication response/authorization (e.g. PIN, UID/password, etc).
6. If the user authorization was given, (e.g. local authentication of the user based on the provided PIN, UID/password, etc. is correct), , the local GAA server in the terminal derives NAF keys using NonceUI as an input in the following way Ks_NAF-UI = KDF(Ks, NonceUI , …), where Ks_NAF-UI derivation takes the same input as Ks_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6.
7. The GAA server provides Ks_NAF-UI to the GAA client.

8. The GAA client uses the Ks_NAF-UI as the key to calculate the authentication response for the Ua application request.

9. The GAA client sends the Ua application request to the NAF.

10. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

11. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

12. The BSF sends Zn response with Ks_NAF-UI to the NAF.

13. The NAF uses the received Ks_NAF-UI to verify authentication response received from the GAA client in step 9.

14. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_ME to illustrate how the mechanism works, and it should be noted that the derived NAF keys could be used to protect in principle any Ua application protocol.

Note that trusted platform is required for deployment of GAA Server and GAA Client in ME, to fulfill the requirements of TR 33.905[12]. The definition of such trusted platform is outside of 3GPP scope.

In addition, an appropriate protocol for negotiation UE-supported local user authentication capabilities vs. required by the NAF authentication capabilities may be needed.

7.4.2.3
GBA_U-based solution

By local user authentication, the UICC can locally confirm that the authorized user is present. For instance, the GAA server may present a dialog box to the user asking to authorize that application "Bank.com" can use GBA authentication. The GAA server computes and sends to the UICC the hash of the NonceUI concatenated with the user answer.

If and only if the UICC application has locally authenticated the user, the UICC derives new type of NAF keys which are bound to the ongoing transaction by taking the NonceUI in the NAF key derivation. It should be noted that the result of the local user authentication (e.g. a PIN) is not taken into the NAF key derivation. Instead, the UICC is a tamper resistant device in the User Equipment which, in addition to performing bootstrapping and deriving NAF keys for applications, is trusted to perform local user authentication when the GAA client indicates that local user authentication is needed. If the GAA client does not indicate that local user authentication is needed, the UICC derives the regular NAF keys. This approach avoids the burden and complexity of the user authentication credentials synchronization, e.g. a PIN, with the network.
The GAA client uses the received NAF keys for authentication in the Ua application protocol. The NAF requests the NAF keys from the BSF and includes the NonceUI in the Zn request and gets the same NAF keys as the GAA client did.

[image: image2.emf]7. –Verifies that user

authorization is given,

and derive Ks_Ext/Int_NAF-

UI = KDF(Ks, Nonce-UI, ...)

-Stores Ks_int_NAF-UI

GAA client

1.Ua application request (B-TID)

User

Terminal

GAA server

NAFBSF

Zn

U

I

C

C

Ua

2. Ua application answer (auth

challenge, Nonce-UI)

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication

resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI,

...)

13. Derive Ks_ext/int_NAF-UI

= KDF(Ks, Nonce-UI, ...)

14. NAF key response (Ks_ext/

int_NAF-UI)

15. Verify auth resp with

Ks_ext/int_NAF-UI

16. Ok

3. Get NAF keys (Nonce-UI)

6. GBA_U NAF derivation procedure

(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends(Ks_ext_NAF-UI)

4, 5. Local user authentication and

authorization

Figure 7.4.2.3.-1: Using User consent for GBA_U

1. The GAA client in the terminal sends an Ua application request to the application server (i.e. NAF). The request includes the B-TID. In case of GBA – Open ID interworking the UE has been redirected by the RP to contact OP/NAF.

2. The NAF sends back an Ua application answer with an authentication challenge and NonceUI. The NonceUI could be sent for exmple in HTTP product token.

3. When the GAA client requests NAF keys from the GAA server in the terminal it includes the NonceUI in the request.

4. When the GAA server in the terminal receives a requst for NAF keys with NonceUI, the local GAA server requests for local user’s authentication and authorization (e.g. a PIN, UID/password, etc.) to derive the NAF keys for this GAA client.

5. The user provides authentication response/authorization (e.g. PIN, UID/password, etc.).

6. The GAA server in the terminal sends GBA_U NAF Derivation procedure to the UICC application including as additional parameters the NonceUI and hash value of the user’s authorization (e.g. a PIN) concatenated NonceUI (Hash (NonceUI || user authz)) .

7. The UICC verifies that the user is authorized, e.g. the provided user credential (e.g., PIN UID/password, etc.) is correct by retrieving the user authorization value already stored on the UICC to compute the corresponding Hash value (NonceUI || user authz) and compare it with hash value sent by the GAA server as input data of the GBA_U NAF derivation procedure. If the user authorization was given, the UICC application derives NAF keys using NonceUI as an input in the following way Ks_ext/int_NAF-UI = KDF(Ks, NonceUI , …), where Ks_ext/int_NAF-UI derivation takes the same input as Ks_ext/int_NAF derivation, but added with the NonceUI (and with a different FC value). If needed, the GAA server runs bootstrapping before step 6. The UICC stores Ks_int_NAF-UI.
NOTE: The user authorization reference value is stored as TLV (Tag Length Value) object in a file of the UICC protected by Access Conditions.The usage of TLV object lets open the type and format of the user authorization value (e.g. PIN) that could be chosen. The user authorization reference value could be set by the user and stored in the UICC by the GAA server.
8. The UICC sends back to the GAA server Ks_ext_NAF-UI

9. The GAA server provides Ks_ext_NAF-UI to the GAA client.

10. The GAA client uses the Ks_ext_NAF-UI as the key to calculate the authentication response for the Ua application request.

11. The GAA client sends the Ua application request to the NAF.

12. The NAF requests NAF keys, and optionally USS, from the BSF over Zn. NonceUI is included in the request.

13. When the BSF receives the Zn request with NonceUI, the BSF calculates the Ks_ext/int_NAF-UI using NonceUI as an input in the NAF key derivation similarly as in step 6.

14. The BSF sends Zn response with Ks_ext/int_NAF-UI to the NAF.

15. The NAF uses the received Ks_ext_NAF-UI to verify authentication response received from the GAA client in step 11.

16. The NAF sends an Ua response to the GAA as a result of a successful authentication. In case of GBA – Open ID interworking the UE is re-directed back to the the RP.

The flow shows a generic authentication handshake between the GAA client and the NAF over Ua relying on GBA_U to illustrate how the mechanism works.

Note that trusted platform is required for deployment of GAA Server and GAA Client in ME, to fulfill the requirements of TR 33.905[12]. The definition of such trusted platform is outside of 3GPP scope.

In addition, an appropriate protocol for negotiation UE-supported local user authentication capabilities vs. required by the NAF authentication capabilities may be needed.

7.4.3
Functional Architecture
An example of the functional architecture of the solution with local user authentication is depicted in Figure 7.4.Y-1.

The Authorization Function on the UE works as a proxy to the multi-factor authentication server (e.g., OP/NAF) and carries out authentication on behalf of the server. The role of the proxy is to carry out policies as specified by the server and to provide an authorization to use the GBA authentication. The server may delegate more than one factor of authentication (this may be based on knowledge of the capability of the UE and on the server policy) to the local proxy and provision the proxy with policies on how the authentications are to be carried out, how often, under what circumstances, and a minimum level of confidence in the user identity that should be achieved based on Service Provider (SP) requirements. It is assumed that the proxy operations are protected by a secure environment on the UE.

The operation of a solution implementing such functional architecture is as follows:

· A user requests service from an SP.

· The SP wishes to authenticate the user with a minimum level of confidence in the user identity to allow access to use the GBA authentication for the requested service, leveraging the availability of a diverse set of authentication capabilities becoming available on user devices.

· The user provides input of credentials over the UE user interface.

· User credentials are matched and assertions generated.
Note: The mechanism for matching user credentials as well as specifying types of credentials are outside of the scope of this document.

· The assertions are analysed by the Authorization Function.

· The Authorization Function on the UE confirms the assertions and provides the authorization to use the GBA authentication.

· Upon successful conclusion of a GBA authentication, the SP receives implicit confirmation of the local user authentication and then allows access to the service requested by the user.

· Upon successful conclusion of a GBA authentication, the SP receives implicit confirmation of the local user authentication and then allows access to the service requested by the user.

[image: image3]
Figure 7.4.3-1 Functional Architecture of a GAA Solution with Local User Authentication.

NOTE :
Device drivers, Authorization Function, GAA Server, GAA Client, and user interface have to operate in a secure environment (e.g., UICC, external Smart Card, or Secure Environment on ME)

The benefits of the local user authentication approach used as either the only method of authentication or in combination with the more traditional server-based authentication (e.g., AKA, GBA, etc.) include the following:

· A high level of assurance that the rightful subscriber has provided consent and authorization for the use of GBA authentication on the UE.

· Users’ credentials never leave the UE, and may reside in the Secure Environment on the UE. This can be potentially very useful with credentials that are difficult to revoke and re-issue (e.g., biometric credentials). Such approach may alleviate privacy concerns of potential users and help to accelerate adoption of the service.

· Autonomous local user authentication becomes achievable, allowing user authentication when network connectivity is not possible (e.g. to unlock the phone after first power on).

END OF CHANGES

Terminal

GAA server

Device drivers

GAA client

UICC

BSF

NAF

Ub

Zn

Ua

Authorization Function

Aggregate Assertion

Assertions

PIN Assertion

_1443252047.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

12. NAF key response (Ks_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

4, 5. Local user authentication and authorization

13. Verify auth resp with Ks_NAF-UI

2. Ua application answer (auth challenge, Nonce-UI)

6. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

7. Response (Ks_NAF-UI)

8. Calculate authentication resp with Ks_NAF-UI

9. Ua application request (auth resp)

10. NAF key request (B, TID, Nonce-UI, ...)

11. Derive Ks_NAF-UI = KDF(Ks, Nonce-UI, ...)

14. Ok

_1450680406.vsd
GAA client

UICC

User

1.Ua application request (B-TID)

14. NAF key response (Ks_ext/int_NAF-UI)

Terminal

GAA server

NAF

BSF

3. Get NAF keys (Nonce-UI)

Ua

Zn

4, 5. Local user authentication and authorization

15. Verify auth resp with Ks_ext/int_NAF-UI

2. Ua application answer (auth challenge, Nonce-UI)

7. – Verifies that user authorization is given,
and derive Ks_Ext/Int_NAF-UI = KDF(Ks, Nonce-UI, ...)
- Stores Ks_int_NAF-UI

9. Response (Ks_ext_NAF-UI)

10. Calculate authentication resp with Ks_ext_NAF-UI

11. Ua application request (auth resp)

12. NAF key request (B, TID, Nonce-UI, ...)

13. Derive Ks_ext/int_NAF-UI = KDF(Ks, Nonce-UI, ...)

16. Ok

6. GBA_U NAF derivation procedure
(..., Nonce-UI, Hash(Nonce-UI user authz)

8. Sends (Ks_ext_NAF-UI)

