3GPP TSG SA WG3 (Security) Meeting #79
S3-151287
Nanjing, China, April 20 – 24, 2015

 revision of S3-14abcd
Source:
Alcatel-Lucent
Title:
TR 33.872 – Editorial corrections and clarifications for OAuth based TURN authentication
Document for:
Discussion and Approval
Agenda Item:
7.1.2 Security Aspects of Web Real Time Communication (WebRTC) Access to IMS
Work Item / Release:
eWebRTCi/ Rel-13
Abstract of the contribution:

This contribution provides editorial corrections to section 6.3.2 and also expands section 6.3.2.1 by providing more introductory text about the proposed TURN protocol enhancements for third party authorization using OAuth.
1. Introduction
This contribution provides editorial corrections to section 6.3.2. In addition it provides additional introductory text on TURN protocol enhancements for third party authorization in section 6.3.2.1, and aligns “Implicit grant” based example realization (section 6.3.2.2) with “Client Credentials” based example realization (section 6.3.2.3).
2. Pseudo CR

*************************** BEGIN CHANGES ****************************
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 41.001: "GSM Release specifications".

[3]
3GPP TR 21 912 (V3.1.0): "Example 2, using fixed text".
[4]
https://tools.ietf.org/html/rfc5766: Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)
[5]
http://tools.ietf.org/html/rfc5389: Session Traversal Utilities for NAT (STUN)
[6]
http://tools.ietf.org/html/rfc7376: Problems with Session Traversal Utilities for NAT (STUN) Long-Term Authentication for Traversal Using Relays around NAT (TURN)
[7]
https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-01: OAuth 2.0 Proof-of-Possesson (PoP) Security Architecture

[8]
https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-01: OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key Distribution

[9]
https://tools.ietf.org/html/draft-ietf-tram-turn-third-party-authz-13: Session Traversal Utilities for NAT (STUN) Extension for Third Party Authorization

6.3.2.1
General

The reference paper draft-ietf-tram-turn-third-party-authz-13 [9] proposes a new mechanism for TURN client authentication authorization mechanism different from the current long-term credential solution. In this solution, the TURN client uses OAuth to obtain an ephemeral self-contained token and the associated secret session key from the authorization server. The token is presented to the TURN server instead of username/password credentials. The server validates the authenticity of the token and provides required services. In addition, the secret key is used by the client to prove Proof-of-Possesion to the server and to integrity protect the connection between TURN client and TURN server.
The following are the salient features of the proposed mechanism in the IETF draft [9]:
1. It is based on OAuth 2.0 Proof-of-Possession (PoP) Security Architecture [7] and OAuth 2.0 Proof-of-Possesion: AS to Client Key Distrubution [8]
2. Authorization server (WAF) and TURN server share a long-term secret K. From this, two additional keys are derived:
a) AS-RS key: used to encrypt the token
b) AUTH key: used to ensure message integrity of the TURN messages
3. It introduces two new TURN attributes:
a) ACCESS-TOKEN: used by the TURN client to forward the access token to the TURN server
b) THIRD-PARTY-AUTHORIZATION: used by the TURN server to inform the client that it supports 3rd party authorization. It contains the TURN server name.
4. Self-contained token is used to contain all the information necessary to authenticate the validity of the token. It is made up of two parts: Encrypted data and HMAC code.

Encrypted data consists of a block of data encrypted with the AS-RS key. The data block contains the following parameters:
a) Session key generated by the authorization server (mac_key)

b) Lifetime of the access token (lifetime)
c) Timestamp

d) Key length in octects (key_length)
HMAC code (mac) which is computed with the AUTH key over the Encrypted data and the TURN server name.

5. Client is unaware of the contents of the token. It just forwards it to the TURN server in the “Allocate” request.

In brief the mechanism works as follows:
a) TURN Client begins by sending “Allocate” request without any credentials.
b) TURN server rejects the request and challenges the client to authenticate itself by sending “Allocate” error response with error code set to “401 Unauthorized”
c) Client initiates the OAuth process by sending Access Token request to the authorization server – this will contain “aud” parameter containing the TURN server name and “alg” specifiying the algorithm to use.
d) Once the client is authorized, the authorization server responds with an access token, the session key (i.e. mac_key) and the key id (in key_id)
e) The client now retries the “Allocate” request, this time including i) the access token in the ACCESS-TOKEN attribute, ii) key_id in the USERNAME attribute and iii) MESSAGE-INTEGRITY attribute containing the HMAC value computed over the the contents of TURN message with the session key (mac_key) used as the input key
f) The server receives the request and performs few key steps to authenticate the client:
- Performs message integrity check on the access token using the AUTH key,
- Using AS-RS key it decrypts the the encrypted_block and obtains the session key (mac_key),

- Using mac_key it performs the message integrity check over the request and matches it with the contents of the MESSAGE-INTEGRITY attribute.
g) If all the checks pass, the server allocates a “relayed transport address” for the client and responds with the “Allocate” success response containing this address and the “server reflexive address” that indicates the address on the public side of the NAT.
6.3.2.2
OAuth Implicit Grant based TURN Authentication in WebRTC

Figure 6.3.2.2-1 illustrates aTURN authentication flow in IMS_WebRTC based on OAuth Implicit grant.

Following is the mapping of various roles in IMS_WebRTC:

a) The Browser, executing ICE Agent on behalf of the WIC, is the TURN client.
b) The WIC is the OAuth client (of implicit type)
c) The WAF is the authorization server that issues the access token to the WIC.

d) The TURN server is the resource server that receives the access token from the TURN client.

The WAF and the TURN server share a long-term secret K. From this, two additional keys are derived to encrypt the token and ensure message integrity of the message.
The WIC performs the HTTPS request to WWSF/WAF to obtain an access token. The WAF responds with a self-contained token, a TURN session key and the key identifier. The WIC configures these parameters in the TURN client (browser) through the W3C API RTCPeerConnection. This completes the set of activities that fall in the 3GPP scope.

Following paragraph is for information only, and outside the scope of 3GPP:

Internally the ICE Agent in the browser initiates TURN message flow as perRFC 5766 [4] and STUN Extension for Third Party Authorization [9] . The configured values of the access token and the key identifier are sent to the server in the TURN Allocate request. TURN server uses the key identifier to select the appropriate keys for token integrity validation and decryption. TURN server performs message integrity check of the message and extracts the TURN session key from this self-contained token. Subsequent TURN messages are integrity protected by using this TURN session key, the TURN server authencates the WIC by verifying the message integrity value carried in the MESSAGE-INTEGRITY attribute.

[image: image1.emf]WebRTC IMS

Client

TURN ServerWWSF

2. Request Access Token (Host: server.example.com, client_id,

token_type=pop, aud=turn.server.com, response_type=token,

redirection_URI=turn.op.com, alg=HMAC-SHA-1)

Authorization

Server (AS)

0. Client Register

(client_type = public, redirection_uri = turn.op

.com)

0. client_id

4. Browser redirect (https://

ims.op.com?access_token=xy3x4rhh&token_type=pop&expires_in=36

00&kid=3140Gj&key=eyJhbGcio0…&alg=HMAC-SHA-1)

User

Enter URL

Start OAuth

process

(Implicit-grant

based)

Webpage downloaded over HTTPS + client_id

3. Present Authorization GUI

3. User credentials and authorization

Verify and generate

access token, session

key

Retrieve access token and

session key from the response.

Configure WebRTC.

User action triggers

client registration

1. User selects an IMS

Action

Browser

(TURN Client)

5.

RTCPeerConnectio

n

Access token = xy3x4rhh, kid=3140Gj,

key=eyJhbGcio0

6. TURN Client (WIC) uses Access token to authenticate and obtain

“Relayed Transport Address” from the TURN Server

WIC to TURN server co

nnection is now integrity protected

 Figure 6.3.2.2-1: TURN authentication based on OAuth access token
The details of the signalling flows are as follows:

0. WIC registers with the WAF
Before a WIC can request access to the protected resource in TURN server, it must first register with the WAF associated with the TURN server. The field client_type is set as public. A redirect URI is also registered with the server. This is the client’s redirection point used by the WAF to redirect the browser (user-agent) once the subscriber is authenticated successfully.

In response, the WAF will assign a unique client ID to the registered client.

Step 0 is completed independently in advance of the following steps.

NOTE 1:.The mechanism used by the WIC to register with the WAF is implementation-specific and is outside the scope of 3GPP.
1. User clicks on a button to make a WebRTC call

The user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The browser downloads and initializes WIC from the WWSF. WIC learns its client ID at this point.
At some point in time the user clicks on a button to make a WebRTC call.

NOTE 2 : The WIC registers with the IMS through any of the registration scenarios specified in Annex X of TS 33.203 before user can place a call.
2. Request Access token

WIC starts the OAuth process. It issues HTTP GET to request access token from the OAuth server. It includes all the required parameters like registered client_id, TURN server name in the aud parameter etc.
3. User authentication and authorization

WAF authenticates the user and obtains user authorization from user to setup a WebRTC call.
4. WIC gets the access token

WAF generates an access token and a session key. Access token is structured according to the format in [9]. It contains a unique session key encrypted with the corresponding AS-RS key for the TURN server, and HMAC value of the encrypted portion of the token. The access token, session key and key identifier (kid) is returned back to the WIC through browser re-direct.
5. Configure RTCPeerConnection object in the browser
The WIC creates a WebRTC connection with RTCPeerConnection.

The RTCPeerConnection is the WebRTC component (API) that handles efficient streaming of data between two peers. Following TURN related information is configured via this API - TURN Server URI, key id (as username), session key (as credential) and access token.
6. WebRTC uses TURN to obtain “relayed transport address” on the TURN server

NOTE 3: This step is executed by WebRTC API inside the browser and is outside the scope of 3GPP.
The WebRTC API executing inside the browser uses TURN protocol as specified in RFC 5766 [4] and STUN Extension for Third Party Authorization [9] to allocate and obtain “relayed transport address” from the TURN server. The client uses access token and session key to authenticate itself with the server.

All communication between the WIC and TURN server is now integrity protected with the session key.

NOTE 4: It is recommended that this solution be only used in IMS registrations scenarios 2 and 3 which use a similar access token based mechanism to authenticate the WIC.

NOTE 5: IMS Registration scenario 3 provides a mechanism by which an anonymous user skips authenticating with the WWSF but is able to access IMS services like any other authenticated user. Similar mechanism is supported by this solution when “client credentials” based flow is used for TURN authentication. In such a mechanism, the WWSF skips authenticating the WIC but provides an access token for it to authenticate with the WAF.

6.3.2.3
OAuth Client Credentials grant based TURN Authentication in WebRTC

Figure 6.3.2.3-1 illustrates aTURN authentication flow in IMS_WebRTC based on OAuth Client Credentials grant.

Following is the mapping of various roles in IMS_WebRTC when “Client Credentials” grant is used:

a) The Browser, executing ICE Agent on behalf of the WIC, is the TURN client.

b) The WWSF is the OAuth client (of confidential type)

c) The WAF is the authorization server that issues the access token to WWSF.

d) The TURN server is the resource server that receives the access token from the TURN client.

[image: image2.emf]WebRTC IMS

Client

TURN Server

WWSF

(OAuth Client)

3. Request Access

Token ()

Authorization

Server (AS)

0. Client Register

(client_type =

confidential)

0. client_id

4. Response with

Access token

User

Enter URL

Start OAuth

process

(Client

Credentials)

Webpage downloaded over HTTPS

2. Present Authorization GUI

2. User credentials and authorization

Verify and generate access

token, session key

Retrieve access token, kid and

session key from the response.

and

Configure WebRTC.

User action triggers

client registration

1. User initiates a SIP

call

Browser

(TURN Client)

5.

RTCPeerConnectio

n

Access token = xy3x4rhh, kid=3140Gj,

key=eyJhbGcio0

6. TURN Client (WIC) uses Access token to authenticate and obtain

“Relayed Transport Address” from the TURN Server

WIC to TURN serv

er connection is now integrity protecte

d

4.

access_token=xy3x4rhh&kid=3140Gj&key=e

yJhbGcio0…

access_token=xy3x4rhh&token_type=p

op&expires_in=3600&kid=3140Gj&key=

eyJhbGcio0…&alg=HMAC-SHA-1

WIC registers with the IMS network

IMS

Parameters:

Host: server.example.com,

grant_type=client_credentials, client_id,

client_secret, token_type=pop,

aud=turn.server.com,

response_type=token,

redirection_URI=turn.op.com,

alg=HMAC-SHA-1

1. User initiates a SIP call

 Figure 6.3.2.3-1: TURN authentication based on OAuth Client Credentials grant
The details of the signalling flows are as follows:

0. WWSF registers with the WAF

Before WWSF can request access to the protected resource in TURN server, it must first register with the WAF associated with the TURN server. The field client_type is set as confidential.

In response, the WAF will assign a unique client ID and client password to the WWSF.

Step 0 is completed independently in advance of the following steps.

NOTE 1: The mechanism used by the WWSF to register with the WAF is at the discretion of the implementation and is outside the scope of 3GPP.
1. User clicks on a button to make a WebRTC call

The user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The browser downloads and initializes WIC from the WWSF.

At some point in time the user clicks on a button to make a WebRTC call.

NOTE 2: The WIC registers with the IMS through any of the registration scenarios specified in Annex X of TS 33.203 before the user places a call.
2. User authentication and authorization

WWSF authenticates the user and obtains authorization from the user to setup a WebRTC call.

NOTE 3: WWSF should skip this step if it has authenticated and obtained user’s authorization during IMS registration, and IMS registration is still considered active.

3. Request Access token

WWSF starts the OAuth process. It issues HTTP GET to request access token from the OAuth server. It includes all the required parameters like registered client_id, client password, TURN server name in the aud parameter etc. The field grant_type is set to client_credentials.
4. WIC gets the access token

WAF authenticates the client (WWSF) and generates an access token and a session key. Access token is structured according to the format in [9]. It contains a unique session key encrypted with the corresponding AS-RS key for the TURN server, and HMAC value of the encrypted portion of the token.

The access token, session key and key identifier (kid) is returned back to the WWSF. The WWSF in turn provides these values to the WIC.
5. Configure RTCPeerConnection object in the browser

The WIC creates a WebRTC connection with RTCPeerConnection.

The RTCPeerConnection interface is the WebRTC component (API) that handles efficient streaming of data between two peers. Following TURN related information is configured via this API - TURN Server URI, key id (as username), session key (as credential) and access token.
6. WebRTC uses TURN to obtain “relayed transport address” on the TURN server

NOTE 4: This step is executed by WebRTC API inside the browser and is outside the scope of 3GPP.
The WebRTC API executing inside the browser uses TURN protocol as specified in RFC 5766 [4] and STUN Extension for Third Party Authorization [9] to allocate and obtain “relayed transport address” from the TURN server. The TURN client uses access token and session key to authenticate itself with the server.

All communication between the WIC and TURN server is now integrity protected with the session key.
*************************** END CHANGES ****************************
3. Conclusion

We kindly ask SA3 to agree to the changes provided in this contribution and approve the pCR to TR 33.872.
_1478411713.vsd
Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Text

Text

Text

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Tag. Select and type.

_1483884480.vsd
Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Balloon callout. Select shape and start typing. Resize box to desired dimensions. Move control handle to aim pointer at speaker.

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Text

Text

Text

Drag the side handles to change the width of the text block.

Drag the side handles to change the width of the text block.

The height of the text box and its associated braces increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

Tag. Select and type.

The height of the text box and its associated bracket increases or decreases as you add text. To change the width of the comment, drag one of the side handles.

