
3GPP TSG-SA3 Meeting #77
S3-142547
San Francisco, US 17-21 November 2014

revision of S3-142203
	CR-Form-v11

	CHANGE REQUEST

	

	
	33.303
	CR
	0019
	rev
	1
	Current version:
	12.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Adding the details of the PGK delivery

	
	

	Source to WG:
	Qualcomm Incorporated

	Source to TSG:
	S3

	
	

	Work item code:
	ProSe
	
	Date:
	2014-11-17

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	The details of how a PGK is securely transported to the UE are missing. Without these, the one-to-many commuication cannot work securely

	
	

	Summary of change:
	Formal definition of the PKMF, which provides the PGKs, is added.
Details of using MIKEY to transport the PGKs to the UE are provided.
Details of the Key Request/Response are provided.

	
	

	Consequences if not approved:
	The UE will not be able to get the PGKs from the ProSe Key Management Function and hence it will not be possible to secure the ProSe one-to-many communications at the bearer layer.

	
	

	Clauses affected:
	2, 4.2, 6.2.3.1, 6.2.3.2, 6.2.3.3.1 (new), 6.2.3.3.Y(new), 6.2.3.5, Annex X (new)

	
	

	
	Y
	N
	
	

	Other specs
	
	N
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	N
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	N
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

**** FIRST CHANGE ****

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.303: "Proximity-based services (ProSe); Stage 2".

[3]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[4]
3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".

[5]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".

[6]
ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications".

[7]
ETSI TS 102 226: "Smart cards; Remote APDU structure for UICC based applications".

[8]
3GPP TS 31.115: "Secured packet structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications".

[9]
3GPP TS 31.116: "Remote APDU Structure for (U)SIM Toolkit applications ".

[10]
IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".

[11]
IETF RFC 3711: "The Secure Real-time Transport Protocol (SRTP)".

[12]
IETF RFC 6509: "MIKEY-SAKKE: Sakai-Kasahara Key Encryption in Multimedia Internet KEYing (MIKEY)".

[13]
IETF RFC 3830: "MIKEY: Multimedia Internet KEYing".

[14]
IETF RFC 6507: "Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)".

[15]
NIST FIPS 186-4: "Digital Signature Standard (DSS)".

[16]
BSI TR-03111: "Technical Guideline TR-03111; Elliptic Curve Cryptography".

[17]
IETF RFC 5639: "Elliptic Curve Cryptography (ECC) Brainpool Standard; Curves and Curve Generation".

[18]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".

[19]
IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile".

[20]
NIST FIPS 180-4: "Secure Hash Standard (SHS)".

[21]
3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".

[22]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application functions using Hypertext Transfer Protocol over Transport Layer Security (HTTPS)".

[23]
IETF RFC 3261: "SIP: Session Initiation Protocol".

[24]
IETF RFC 6508: "Sakai-Kasahara Key Encryption (SAKKE)".

[25]
IETF RFC 5480: "Elliptic Curve Cryptography Subject Public Key Information".
[26]
IETF RFC 6090: "Fundamental Elliptic Curve Cryptography Algorithms".

[27]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".
[28]
IETF RFC 5905: "Network Time Protocol Version 4: Protocol and Algorithms Specification".

[29]
IETF Draft draft-ietf-avtcore-srtp-aes-gcm-14: "AES-GCM and AES-CCM Authenticated Encryption in Secure RTP (SRTP)".

[30]
IETF RFC 5282: "Using Authenticated Encryption Algorithms with the Encrypted Payload of the Internet Key Exchange version 2 (IKEv2) Protocol".

[31]
IETF RFC 5116: "An Interface and Algorithms for Authenticated Encryption".

[32]
3GPP TS 33.328: "IP Multimedia Subsystem (IMS) media plane security".

[33]
IETF RFC 6043: "MIKEY-TICKET: Ticket-Based Modes of Key Distribution in Multimedia Internet KEYing (MIKEY)".

[34]
IETF RFC 3986: "Uniform Resource Identifier (URI): Generic Syntax".
[35]
IETF RFC 4563: "The Key ID Information Type for the General Extension Payload in Multimedia Internet KEYing (MIKEY)".
[aa]
W3C REC-xmlschema-2-20041028: "XML Schema Part 2: Datatypes".

[bb]
IETF RFC 2616: "Hypertext Transfer Protocol -- HTTP/1.1".

**** NEXT CHANGE ****
4.2
Reference points and Functional Entities

PCxx:
The reference point between the UE and the ProSe Key Management Function. PC3a relies on EPC user plane for transport (i.e. an "over IP" reference point). It is used to transport security material to UEs for ProSe one-to-many communications.

The ProSe Key Management Function (PKMF) is a logical function possibly under the administration of a Public Safety organization or a MNO, and is used to generate and disseminate security material required for ProSe operation of Public Safety UEs. In practice it is possible to deploy a PKMF outside of the operator domain or co-located with the ProSe Function in the operator domain.

**** NEXT CHANGE ****
6.2.3.1
Security keys and their lifetimes

As part of the TLS protected signalling between the UE and ProSe Key Management Function, a ProSe MIKEY Key (PMK) may be sent from the ProSe Key Management Function to the UE. This key is used to protect the MIKEY messages that are used to carry the PGKs to the UE. The usage of PMK to protect the MIKEY messages is described in clause 6.2.3.3.2.3. The UE keeps the PMK until it receives a new one from the ProSe Key Management Function.
A UE needs to have an algorithm identity and a PGK (ProSe Group Key) provisioned for each group that they belong to. From this key, a UE that wishes to broadcast some encrypted data shall first generate a PTK (ProSe Traffic Key). The parameters used in this generation ensure that PTKs are unique for each UE and need to be transferred in the header of the user data packet (see below for more information). The PTK is derived when the first PDCP entity for a group is created and then PDCP entities created further for the same group shall use the PTK derived for the group.

From the PTK, a UE derives the needed ProSe Encryption Key (PEK) to be able to encrypt the data. The UE can protect the data to be sent with the relevant keys and algorithms at the bearer level (see clause 6.2.3.3 for more details).
A receiving UE would need to derive the PTK using the information in the bearer header and then the PEK used to decrypt the data.

When the PGKs are provided to the UE, they shall be provided with an Expiry Time. The Expiry Time of the PGK needs to be set such that the keys for later periods have a longer expiration period. Each PGK for each group should be associated with a different Expiry Time value.

When protecting data that is to be sent, the UE uses the PGK with the earliest expiration time to derive the PTK etc, for that group. When receiving protected data the UE shall only use a PGK that has not expired or the PGK that has most recently expired. All other expired PGK(s) should be deleted.

When a PGK key is deleted in the sending UE and receiving UE, all related keys as PTK and PEK derived from the expired PGK shall be deleted as well as the related PGK Identity, PTK Identity and Counter. After releasing all the PDCP entities of a group, the PTK and PEK derived for the group is deleted.
**** NEXT CHANGE ****

6.2.3.2
Identities

The ProSe Key Management Function sends to the UE a PMK along with a 64 bit PMK identity. The UE uses both the PMK identity and the FQDN of the ProSe Key Management Function to identify the PMKs locally (e.g., PMK_id@FQDN). The ProSe Key Management Function shall only allocate currently (and locally) unused PMK identities.

The PGKs are specific to a particular group and hence have a Group Identity associated with that group. This Group Identity is referred to as "ProSe Layer-2 Group ID" in TS 23.303 [2]. In addition, each PGK associated with a group has 8-bit PGK Identity to identify it. This allows several PGKs for a group to be held simultaneously as each can be uniquely identified. When allocating PGK ID, the ProSe Key Management Function shall ensure that all allocated PGKs that have not expired shall be uniquely identifiable by the 5 least significant bits of the PGK ID. This means that the combination of Group Identity and PGK Identity uniquely identifies a PGK. The Group Identity is the destination Layer 2 identity of the group. An all zero PGK Identity is used to signal special cases between the UE and ProSe Key Management Function, and hence is never used to identify a PGK.
Each member of a group has a unique Group Members Identity, identifying a UE within a group and referred to as "ProSe UE ID" in TS 23.303 [2]. This is used a part of the PTK derivation to ensure each user generates unique PTKs for protecting the data that they send. The Group Members Identity is the source Layer 2 identity when the UE sends data.

The PTK identity shall be set to a unique value in the sending UE that has not been previously used together with the same PGK and PGK identity in the UE. A 16-bit counter in association with the Group Identity, PGK identity and the Group Member Identity may be used as the PTK identity. Every time a new PTK needs to be derived, the PTK Identity counter is incremented.
A PTK is uniquely identified by the combination of Group Identity, PGK Identity, Group Member Identity of the sending UE and a 16-bit PTK identity. The PTK Identity is used as part of the derivation of PTK to ensure that all PTKs are unique.

A Logical Channel ID (LCID) associated with the PDCP/RLC entity is used as an input for ciphering in order to avoid key stream repetition (i.e., to avoid counter being re-used with the same PEK by one or more PDCP entities corresponding to a group).
A 16 bit counter is maintained per PDCP entity. Counter and LC ID ensures key stream freshness across the transmission by multiple PDCP entities of the same group. The counter is same as the PDCP SN in regular LTE. If the Counter associated with a PDCP entity is about to wrap around in the sending UE then a new PTK Identity shall be used (which has not been previously used together with the same PGK and PGK identity in the UE), and a new PTK key shall be derived from the PGK key taking the new PTK Identity into use. A new PEK shall be derived from the new PTK key as well. The old PTK key shall be deleted together with the corresponding old PEK derived from the old PTK key.

If the receiving UE receives a PDCP packet with a new PTK Identity that has not been previously used with the same PGK and PGK identity in the receiving UE, then the receiving UE shall delete any old PTK key kept for the same PGK and PGK identity and also delete the corresponding old PEK derived from the old PTK key.

Editor's note: Its FFS whether the sending UE at UE power off needs to store the PTK Identities that has been used with a specific PGK and PGK Identity in order to avoid key-stream reuse at UE power on.

**** NEXT CHANGE ****

6.2.3.3
Security flows
6.2.3.3.1
Overview
The protection of one-to-many communication proceeds as shown in the figure below.

[image: image1.emf]ProSe Key

Management

Function

UE1

UE2

ProSe

Function

1a. Service authorisation

2a.i Key Request (Group ID, UE EPS security capabilities)

4a. Process

received data

3a. Send protected

user plane

1b. Service authorisation

3b. Send protected

user plane

0a. Configure

0b. Configure

0c. Configure0d. Configure

4b. Process

received data

2a.iii Key Response (Group Member ID, PMK ID, PMK, algorithm)

2b.i Key Request (Group ID, UE EPS security capabilities)

2b.iii Key Response (Group Member ID, PMK ID,

PMK, algorithm)

2b.ii Check

algorithms

2a.ii Check

algorithms

2a.iv MIKEY messages (PGK ID, PGK, Expiry Time)

2b.iv MIKEY messages (PGK ID, PGK, Expiry Time)

Figure 6.2.3.3-1: One-to-many security flows

0a or 0b: If needed the UE could be configured with any private keys, associated certificates or root certificate that they may need for contacting the ProSe Key Management Function to allow the keys to be kept secret from the operator. If none are provided, then the USIM credentials are used to protect that interface. The UE may also be pre-configured with the address of the ProSe Key Management Function.
Note X: The ProSe Key Management Function is shown as a separate logical entity to allow the network operator to provision the radio level parameters and a 3rd party, e.g. public safety service, to have control over provisioning the keys. If such a separation is not needed then the ProSe Key Management Function may be deployed as part of the ProSe Function
0c and 0d: The ProSe Function and ProSe Key Management Function need to be configured with which subscriptions (either mobile subscriptions or identities in certificates) are member of which groups.

1a or 1b: The UE fetches the one-to-many communication parameters from the ProSe Function. As part of this procedure the UE gets its Group Identity (see TS 23.303 [2]) and is informed whether bearer layer security is needed for this group. In addition the UE may be provided with the address of the ProSe Key Management Function that it uses for obtaining keys for this group.

2a.i or 2b.i: The UE sends the Key Request message to the ProSe Key Management Function including the Group Identity of the group for which it wants to fetch keys and UE EPS security capabilities (including the set of EPS encryption algorithms the UE supports).

2a.ii or 2b.ii: The ProSe Key Management Function checks whether the group encryption algorithm is supported by the UE according to the UE EPS security capabilities, i.e. whether the group encryption algorithms included by the set of EPS encryption algorithms the UE supports.

2a.iii or 2b.iii: The ProSe Key Management Function responds with the Key Response message. If the check of step 2a.ii or 2b.ii is successful for a particular group, this message contains the Group Member Identity and the EPS encryption algorithm identifier that the UE should use when sending or receiving protected data for this group. Otherwise, this message contains an indicator of algorithm support failure as the UE does not support the required algorithm. This message may also contain a PMK and associated PMK ID if the ProSe Key Management Function decides to use a new PMK.
2a.iv or 2b.iv: The ProSe Key Management Function sends the relevant PGKs, PGK IDs and expiry time to the UE using MIKEY.
3a or 3b: The UE calculates the PTK and PEK to protect the traffic it sends to the group. It does this by selecting the PGK as described in subclause 6.2.3.1 and uses the next unused combination of PTK Identity and Counter. It then protects the data using the algorithm given in step 2x.ii.

4a or 4b: A receiving UE gets the LC ID, Group Identity and Group Member Identity from the layer 2 header. It then uses the received bits of the PGK Identity to identify which PGK was used by the sender. The UE first checks that the PGK is valid (see subclause 6.2.3.1) and if so calculates the PTK and PEK to process the received message.
6.2.3.3.2
Messages between UE and ProSe Key Management Function

6.2.3.3.2.1
General

There are two types of messages that flow between the UE and ProSe Key Management Function. Firstly, there are the Key Request and Response messages. The UE uses these messages to request keys for particular groups, while the ProSe Key Management Function uses these messages to provide the UE with its group member identifier(s) and the security algorithms to use with the various groups. Secondly, there are the MIKEY messages, which the ProSe Key Management Function uses to send the PGKs to the UE. These messages are detailed in the following subclauses.
6.2.3.3.2.2
Key Request and Key Response messages
The purpose of these messages is for the UE to inform the ProSe Key Management Function of the groups that the UE wishes to receive keys for and the groups for which the UE no longer wishes to receive keys.
The UE knows which ProSe Key Management Function to contact for each group as it is either pre-provisioned or provided by the ProSe Function. This is the FQDN of the ProSe Key Management Function.
The UE shall not release the PDN connection used to receive MIKEY messages containing PGKs until the UE has informed the ProSe Key Management Function that it no longer requires PGKs. This is to ensure that the ProSe Key Management Function is aware of the correct UE IP address for the purpose of performing PGK deliveries as specified in clause 6.2.3.3.2.3.
If the UE detects that a PDN connection, which is used for receiving PGKs is released by the network, the UE should try to send a new Key Request to inform the ProSe Key Management Function of its new IP address. This is to ensure that the ProSe Key Management Function becomes aware of the new UE IP address for the purpose of performing PGK deliveries. Any new IP address should override any existing ones of the UE at the ProSe Key Management Function.

[image: image3.emf]UE

ProSe Key

Mgmt

Function

OR

Key_REQUEST

Key_RESPONSE (success)

KEY_REQUEST

KEY_RESPONSE (failure)

The protection for the Key Request and Key Response message is described in subclause 6.2.3.5.
When sending a Key Request message to request the ProSe Key Management Function to send PGKs or to change the groups for which it wants to receive keys, the UE shall include the following information;

· The indication of security algorithms that the UE supports for one-to-many commuications;
· List of Group Identities for which the UE would like to receive keys;
· For each Group Identity, the PGK IDs of any keys for that group. If the UE holds no keys for this group, then it sends an all zero PGK ID;
· List of Group Identities for which the UE would like to stop receiving keys.
The ProSe Key Management Function shall check that the UE is authorised to receive keys for the requested groups. This is done by using the UE identity that is bound to the keys that established the TLS tunnel in which the message is sent. It also checks that the UE supports the confidentiality algorithm required for each group. If the UE doesn’t then the ProSe Key Management Function responds with the appropriate error for that group. The ProSe Key Management Function shall update the stored set of the groups for which the UE will be sent keys.
The ProSe Key Management Function responds to the UE with a Key Response message that includes the following parameters:
· List of the Group Identities that were included in the Key Request message;
· For each group that keys will be supplied for, the security algorithm that should be used to protect the data and the group member identity; and
· For each of the other groups, a status code to indicate why keys will not be supplied for that group.
· An optional PMK and PMK Identity.
For the groups that the UE will get keys for, the UE shall store the received information associated with that group identity. If a PMK and PMK identity are included, the UE shall store these and delete any previously stored ones for this ProSe Key Management Function.
The ProSe Key Management Function shall initiate the PGK delivery procedures for the keys that are needed by the UE.
6.2.3.3.2.3
MIKEY messages
6.2.3.3.2.3.1
General
MIKEY is used to transport the PGKs from the ProSe Key Management Function to the UE. MIKEY shall be used with pre-shared keys as described in RFC 3830 [13]. The PMK shared by the ProSe Key Management Function and the UE shall be used as the pre-shared secret. The UDP port for MIKEY is 2269.
The ProSe Key Management Function may use the initial message to send the PGK to the UE. Alternatively the ProSe Key Management Function may use the initial MIKEY message (by setting the PGK_ ID to all zeros) to trigger a Key Request message from the UE. As part of this Key Request Message, the ProSe Key Management Function may refresh the PMK used between the UE and ProSe Key Management Function.
The response message is optional and only used if explicitly requested in an initial message containing a PGK.
The replay protection of the MIKEY messages is provided by a 32-bit counter that is associated with each PMK. It is initially set to zero and is increased by one for every message sent. A received message is discarded if the counter value is not greater than the largest successfully received message.
6.2.3.3.2.3.2
Creation of the MIKEY key delivery message

The initial MIKEY message is formed of the payloads which are filled as follows:
· MIKEY common header: The CSB ID field of the MIKEY common header id carries the PGK ID pre-pended with zero or all zeros when the ProSe Key Management Function wants to trigger a Key Request message from the UE. If the ProSe Key Management Function requires an acknowledgement of the PGK delivery message, then, it sets the V-Bit to 1. The #CS field shall be set to zero. The CS ID map type subfield shall be set to "Empty map" as defined in RFC 4563 [35].
· Timestamp payload: The timestamp field shall be of type 2 and contain the value of the replay counter that is associated with this message.

· MIKEY-RAND field: The MIKEY-RAND field shall contain a 128-bit random number that is chosen by the ProSe Key Management Function.

· IDi payload: The ID Type shall be set to the value 0 to indicate an NAI with the identity formed from the Group Identity @ FQDN of the ProSe Key Management Function.
· IDr payload: The ID Type shall be set to the value 0 to indicate an NAI with the identity formed of the PMK identity of the PMK used to protect the MIKEY message @ the FQDN of the ProSe Key Management Function.

· KEMAC Payload: The Type Subfield shall be set to value 2. The use of the NULL algorithm in MAC field is not allowed. The use of the NULL alg in the Encr field is not allowed. The KV (Key Validity) subfield shall be set to the value 2. It is FFS how the lower and upper limits are set. In order to get the UE to delete a PGK, the ProSe Management Function shall set the lower and upper limits to be the same.
6.2.3.3.2.3.3
Processing the MIKEY key delivery message

When a MIKEY message arrives at the ME, the processing process as follows:
- The UE shall extract PMK @ FQDN of the ProSe Key Management Function for the IDr payload to establish which PMK was used to protect the MIKEY message.

- The Timestamp Payload is checked and compared against the stored Counter for the PMK, and the message is rejected if that counter is not larger then the current Counter.

- The integrity of the message is checked. If this fails, the message is discarded, otherwise the processing continues as follows.
- The counter associated with the PMK shall be set to the values conveyed in the Timestamp payload.

- If the PMK used to protect the message is the not the last successfully used one, then it becomes the last successfully used one and any other PMK related to this ProSe Key Management Function is deleted.

- The UE shall extract the PGK ID from the received CS ID. If PGK ID contained in the CS ID is all zeros, then the UE shall stop processing the message and send a Key Request message (as described in subclause 6.3.2.2.3.3).
- The UE shall extract Group Identity from the IDi payload and the PGK and Key Validity data from the KEMAC payload as described in section 5 of RFC 3830 [5]. If the lower and upper limits are the same, then the UE shall delete any key with the Group ID and PGK ID contained in the MIKEY messages. Otherwise the UE shall store the PGK along PGK ID and the validity limits.
6.2.3.3.2.3.4
MIKEY Verification message
If the ProSe Key Management Function is expecting a response (i.e. set the V-bit in the MIKEY common header to 1), then the UE shall respond with a verification message. The verification message is made up of the payloads which are filled as described:
· MIKEY common header: The CS ID is the same as in the MIKEY message carrying the PGK. The #CS field shall be set to zero. The CS ID map type subfield shall be set to "Empty map" as defined in RFC 4563 [35].
· Timestamp payload: The timestamp field shall be of type 2 and contain the value of the replay counter that is associated with this message.

· IDr payload: The ID Type shall be set to the value 0 to indicate an NAI with the identity formed of the PMK identity of the PMK used to protect the MIKEY message @ the FQDN of the ProSe Key Management Function.

· Verification payload: The use of the NULL algorithm in the MAC field is not allowed. The MAC included in the verification payload shall be calculated over both the initiator’s and the responder’s identities as well as the timestamp in addition to over the response message as defined in RFC 3830 [13].
**** NEXT CHANGE ****
6.2.3.5
Protection of traffic between UE and ProSe Key Management Function

The MIKEY messages are protected as described in subclause 6.2.3.3.2.3.

.

**** NEXT CHANGE ****

Annex X (informative):
Key Request and Response messages

X.1
Introduction
This annex defines the Key Request and Key Response procedures between the UE and the ProSe Key Management Function for ProSe one-to-many communications.

X.2
Transport protocol for messages between UE and ProSe Key Management Function

The UE and ProSe Key Management Function shall use HTTP 1.1 as specified in IETF RFC 2616 [bb] as the transport protocol for the messages between the UE and ProSe Key Management Function. The ProSe messages described here shall be included in the body of either an HTTP request message or an HTTP response message. The following rules apply:

-
The UE initiates the transactions with an HTTP request message;

-
The ProSe Key Management Function responds to the requests with an HTTP response message; and

-
HTTP POST methods are used for the procedures.
X.3
XML Schema

Implementations in compliance with the present document shall implement the XML schema defined below for messages used in ProSe key management procedures.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="urn:3GPP:ns:ProSe:KeyManagement:2014"

 elementFormDefault="qualified"

 targetNamespace="urn:3GPP:ns:ProSe:KeyManagement:2014">

 <xs:annotation>

 <xs:documentation>

 Info for ProSe Key Management Messages Syntax

 </xs:documentation>

 </xs:annotation>

 <!-- Complex types defined for parameters with complicate structure -->

 <xs:complexType name="GroupKey-Request">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>

 <xs:element name="PGKId" type="xs:integer" maxOccurs="unbounded"/>

 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GroupKey-Reject">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>

 <xs:element name="error-code" type="xs:integer"/>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:complexType name="GroupKey-Response">

 <xs:sequence>

 <xs:element name="GroupId" type="xs:integer"/>
 <xs:element name="GroupMemberId" type="xs:integer"/>

 <xs:element name="AlgorithmInfo" type="xs:hexBinary" />

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
 <xs:complexType name="PMK-info">

 <xs:sequence>

 <xs:element name="PMK-ID" type="xs:hexBinary" />

 <xs:element name="PMK" type="xs:hexBinary"/>
 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>
 <!-- Complex types defined for transaction-level -->

 <xs:complexType name="KeyReq-info">

 <xs:sequence>

 <xs:element name="transaction-ID" type="xs:integer"/>

 <xs:element name="AlgorithmAvailable" type="xs:hexBinary" minOccurs="0" maxOccurs="1"/>

 <xs:element name="GroupKeyReq" type="GroupKey-Request" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="GroupKeyStop" type="xs:integer" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <xs:complexType name="KeyRsp-info">

 <xs:sequence>

 <xs:element name="transaction-ID" type="xs:integer"/>

 <xs:element name="GroupNotSupported" type="GroupKey-Reject" minOccurs="0" maxOccurs="unbounded"/>

 <xs:element name="GroupResponse" type="GroupKey-Response" minOccurs="0" maxOccurs="unbounded"/>
 <xs:any namespace="##other" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:anyAttribute namespace="##any" processContents="lax"/>

 </xs:complexType>

 <!-- extension allowed -->

 <xs:complexType name="KeyManagementMsgExtType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <!-- XML attribute for any future extensions -->

 <xs:complexType name="anyExtType">

 <xs:sequence>

 <xs:any namespace="##any" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

<!-- Top level Key Management Message definition -->

 <xs:element name="prose-key-management-message">

 <xs:complexType>

 <xs:choice>

 <xs:element name="KEY_REQUEST" type="KeyReq-info"/>

 <xs:element name="KEY_RESPONSE" type="KeyRsp-info"/>

 <xs:element name="message-ext" type="KeyManagementMsgExtType"/>

 <xs:any namespace="##other" processContents="lax"/>

 </xs:choice>

 </xs:complexType>

 </xs:element>

</xs:schema>
An entity receiving the XML body ignores any unknown XML element and any unknown XML attribute.

X.4
Semantics

X.4.1
General

The < prose-key-management-message > element is the root element of this XML document and it can be one of the following elements:
-
<KEY_REQUEST>; or

-
<KEY_RESPONSE>
X.4.2
Semantics of <KEY_REQUEST>
The <KEY_REQUEST> element consists of:

1) <transaction-ID> element which contains the parameter defined in subclause X.5.2.2.1:
2) zero or one <AlgorithmAvailable> element contains the parameter defined in subclause X.5.2.2.2.

3) zero or more <GroupKeyRequest> element, each of which consists of:

a)
a <GroupId> element containing the parameter defined in subclause X.5.2.2.3;

b)
one or more <PGKId> element containing the parameter defined in subclause X.5.2.2.4;
5) zero or more <GroupKeyStop> element containing the parameter defined in subclause X.5.2.2.5.
X.4.3
Semantics of <KEY_RESPONSE>
The <KEY_RESPONSE> element consists of:

1) a <transaction-ID> element which contains the parameter defined in subclause X.5.2.2.1: and

2) zero or more <GroupNotSupported> element, each of which consists of :

a)
a <GroupId> element containing the parameter defined in subclause X.5.2.2.3; and

b)
a <Error-Code> element containing the parameter defined in subclause X.5.2.2.5; and

3)
zero or more <GroupResponse> element, each of which consists of:
a)
a <GroupId> element containing the parameter defined in subclause X.5.2.2.3; and
b)
a <GroupMemberID> element containing the parameter defined in subclause X.5.2.2.6; and

c)
a <AlgorithmInfo> element containing the parameter defined in subclause X.5.2.2.7.
4) zero or one <PMK-info> element, each of which consists of:

a)
a <PMK-ID> element containing the parameter defined in subclause X.5.2.2.8; and

b)
a <PMK> element containing the parameter defined in subclause X.5.2.2.9.
X.5
General message format and information elements coding
X.5.1
Overview

This clause contains general message format and information elements coding for the messages used in the procedures described in the present document.

X.5.2
ProSe direct discovery message formats

X.5.2.1
Data types format in XML schema

To exchange structured information over the transport protocol, XML text format/notation is introduced.

The corresponding XML data types for the data types used in Key Management messages are provided in table X.5.5.1-1.

Table X.2.5.1-1: Primitive or derived types for ProSe Parameter Type

	ProSe Parameter Type
	Type in XML Schema

	Integer
	decimal

	String
	string

	Boolean
	boolean

	Binary
	hexBinary

	Date and Time
	dateTime

For complex data types described in subclause X.5.2.2, an XML "complexType" can be used.

Message construction shall be compliant with W3C REC-xmlschema-2-20041028: "XML Schema Part 2: Datatypes" [aa]
X.5.2.2
Parameters in ProSe key management messages

X.5.2.2.1
Transaction ID

This parameter is used to uniquely identify a ProSe Key management transaction. The UE shall set this parameter to a new number for each outgoing new discovery request. The transaction ID is an integer in the 0-255 range.

X.5.2.2.2
Supported Algorithm

This parameter is used to indicate which encryption algorithm the UE supports for one-to-many commuications. It is a 1 octet long binary parameter encoded as shown in table X.5.2.2.2-1:

Table X.5.2.2.2-1: UE encryption algorithm capability information element

	EPS encryption algorithms supported (octet 1)

	

	EPS encryption algorithm EEA0 supported (octet 1, bit 8)

	0
	
	
	
	EPS encryption algorithm EEA0 not supported

	1
	
	
	
	EPS encryption algorithm EEA0 supported

	

	EPS encryption algorithm 128-EEA1 supported (octet 1, bit 7)

	0
	
	
	
	EPS encryption algorithm 128-EEA1 not supported

	1
	
	
	
	EPS encryption algorithm 128-EEA1 supported

	

	EPS encryption algorithm 128-EEA2 supported (octet 1, bit 6)

	0
	
	
	
	EPS encryption algorithm 128-EEA2 not supported

	1
	
	
	
	EPS encryption algorithm 128-EEA2 supported

	

	EPS encryption algorithm 128-EEA3 supported (octet 1, bit 5)

	0
	
	
	
	EPS encryption algorithm 128-EEA3 not supported

	1
	
	
	
	EPS encryption algorithm 128-EEA3 supported

	

	EPS encryption algorithm EEA4 supported (octet 1, bit 4)

	0
	
	
	
	EPS encryption algorithm EEA4 not supported

	1
	
	
	
	EPS encryption algorithm EEA4 supported

	

	EPS encryption algorithm EEA5 supported (octet 1, bit 3)

	0
	
	
	
	EPS encryption algorithm EEA5 not supported

	1
	
	
	
	EPS encryption algorithm EEA5 supported

	

	EPS encryption algorithm EEA6 supported (octet 1, bit 2)

	0
	
	
	
	EPS encryption algorithm EEA6 not supported

	1
	
	
	
	EPS encryption algorithm EEA6 supported

	

	EPS encryption algorithm EEA7 supported (octet 1, bit 1)

	0
	
	
	
	EPS encryption algorithm EEA7 not supported

	1
	
	
	
	EPS encryption algorithm EEA7 supported

X.5.2.2.3
Group ID

This parameter is used to indicate the Group that the UE is requesting keys for. It is an integer in the 0-167777215 range.
X.5.2.2.4
PGK ID

This parameter is used to indicate the PGK IDs for a particular group. It is an integer in the 0-255 range.
X.5.2.2.5
Error Code

This parameter is used to indicate the particular reason why the UE will not be receiving keys for a requested group. It is an integer in the 0-255 range encoded as follows:

0
Reserved

1
UE does not support the required security algorithms
2
The ProSe Key Management Function does not supply keys for this group
3
UE is not authorised to receive keys for this group
4
UE requested to stop receiving PGKs for this group
5-255

Unused

X.5.2.2.6
Group Member ID

This parameter is used as the identity of the UE within a Group. It is an integer in the 0-167777215 range.
X.5.2.2.7
Algorithm Info
The purpose of the Algorithm info is to indicate the confidentilaity algorithms to be used for ciphering protection of the particular group traffic. It is a binary parameter of length 1 octet that is encoded as shown in table X.5.2.2.7-1.

Table X.5.2.2.7-1: Selected security algorithm information element

	

	Type of ciphering algorithm (octet 1, bit 5 to 7)

	Bits

	7
	6
	5
	
	

	0
	0
	0
	
	EPS encryption algorithm EEA0 (null ciphering algorithm)

	0
	0
	1
	
	EPS encryption algorithm 128-EEA1

	0
	1
	0
	
	EPS encryption algorithm 128-EEA2

	0
	1
	1
	
	EPS encryption algorithm 128-EEA3

	1
	0
	0
	
	EPS encryption algorithm EEA4

	1
	0
	1
	
	EPS encryption algorithm EEA5

	1
	1
	0
	
	EPS encryption algorithm EEA6

	1
	1
	1
	
	EPS encryption algorithm EEA7

	

	Bits 1- 4 and bit 8 of octet 1 are spare and shall be coded as zero.

	

X.5.2.2.8
PMK ID
This parameter is used to identify a PMK. It is an 8 octet long binary parameter.
X.5.2.2.9
PMK

This parameter is a key that is used to protect MIKEY messages. It is a 32 octet long binary parameter.
**** END OF CHANGES ****
_1477130022.vsd
UE1

UE2

ProSe Function

1a. Service authorisation

2a.i Key Request (Group ID, UE EPS security capabilities)

4a. Process received data

2a.iii Key Response (Group Member ID, PMK ID, PMK, algorithm)

1b. Service authorisation

3b. Send protected user plane

3a. Send protected user plane

2b.i Key Request (Group ID, UE EPS security capabilities)

ProSe Key Management Function

0a. Configure

0b. Configure

0c. Configure

0d. Configure

4b. Process received data

2b.iii Key Response (Group Member ID, PMK ID, PMK, algorithm)

2b.ii Check algorithms

2a.ii Check algorithms

2a.iv MIKEY messages (PGK ID, PGK, Expiry Time)

2b.iv MIKEY messages (PGK ID, PGK, Expiry Time)

_1475586121.vsd
UE

ProSe Key Mgmt Function

KEY_REQUEST

OR

Key_REQUEST

Key_RESPONSE (success)

KEY_RESPONSE (failure)

