3GPP TSG SA WG3 (Security) Meeting #77
S3-142511
17 Nov – 21 Nov, 2014; San Fransisco, USA
 revision of S3-14abcd
Source:
Alcatel-Lucent
Title:
pCR to TR 33.cde – Incorporating OAuth 2.0 proof-of-possession security mechanism in IMS_WebRTC
Document for:
Discussion and Approval
Agenda Item:
7.1.2 – Security Aspects of Web Real Time Communication (WebRTC) Access to IMS
Work Item / Release:
eWebRTCi/ Rel-13
Abstract of the contribution:

This paper proposes a pCR update to TR 33.cde with a solution incorporating OAuth 2.0 proof-of-possession security in IMS WebRTC
1. OAuth bearer token security mechanism
 According to RFC 6750 a bearer token is defined as follows: “A security token with the property that any party in possession of the token (a “bearer”) can use the token in any way that any other party in posessesion of it can. Using a bearer token does not require a bearer to prove possession of cryptographic key material”
With the bearer token security mechanism, the resource server gets no assurance that the OAuth client presenting the bearer token is indeed authorized to do so, nor is it is possible for the OAuth client to prove that it is the rightful owner of the assertion. In other words the bearer token is not bound to a specific OAuth client and the OAuth client possessing the token is not expected to demonstrate proof of identity when using it to gain access with the resource server.

This raises the possibility of the following threats when using bearer token: [NIST800-63-2]:

· Token manufacture/modification - An attacker may generate a bogus token or modify the contents of an existing token, causing resource server to grant inappropriate access to the token.

· Token disclosure - Sensitive subscriber information may be disclosed by the attacker, making the subscriber vulnerable to other types of attacks.

· Token reuse - An attacker attempts to reuse a token that has already been used once with a resource server. A client may, for example, leak access tokens because it cannot keep secrets confidential. The leaked token is now picked up by the attacker and reused maliciously.

· Token redirect - An attacker uses the token generated for one resource server to obtain access to another resource server.
· Token repudiation – Token repudiation refers to a property whereby a resource server is given an assurance that the authorisation server (OAuth server) cannot deny to have created a token for the OAuth client.

A stronger security protection is required to mitigate these threats.
The OAuth 2.0 Proof-of-Possession (PoP) Security Architecture (https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-00) extends bearer token security and provides architecture to mitigate the threats mentioned above. Section 5 of this draft has details on how this can be achieved.
2. OAuth 2.0 Proof-of-Possession security mechanism
In OAuth 2.0 Proof-of-Possession security mechanism, the resource server authenticates the OAuth client by verifying whether the client knows the session key associated with a specific access token. In other words, the OAuth client is required to demonstrate knowledge of the secret key that is bound to the access token when it requests access to the protected resource using that access token. This defeats an attacker from stealing the access token from the client and using it to gain access to protected resources.
The authorization server (OAuth server) acts as a trusted third party to the resource server. They both share a long-term secret key K, which is used to protect the access token in-transit between the OAuth server and the resource server.The authorization server creates and binds a fresh/unique key (symmetric key cryptography) or an ephemeral public/private key pair (asymmetric key cryptography), to the access token.
The following is the sequence of steps when an assertion token (aka self-contained token) is used:
a. OAuth Client places a request for an access token:

· The client includes the identity of the resource server when making the request for an access token.

· The receiving authorisation server verifies that this identity matches any of the resource servers it has a relationship with.

b. The authorisation server creates an access token and embeds the keying material inside the token:

· When symmetric key cryptography is used, a unique session key Ks is created and placed inside the token.

· When asymmetric cryptography is used, the authorization server places the public key inside the token – the public key is either received from the client in step a) or created by the authorization server if it is not received.
c. Protecting the access token - Authorization server encrypts the access token with the long-term key that it shares with the resource server. Decryption is only possible by the intended resource server.

d. The authorization server responds to the OAuth client:

· The authorization server returns the access token and the session key Ks (Figure 1) or the public key/private key pair (Figure 2) over a confidentiality protected channel to the client. Resource server’s identity is also included in the access token.
[image: image1.emf]

[image: image2.emf]
[image: image3.emf] [image: image4.emf]

e. The client provides proof-of-possession when placing a request to the resource server:

· When symmetric key cryptography is used, the client uses Ks to compute a keyed message digest (MAC) for the request

· When asymmetric key cryptography is used, the client uses private key (corresponding to the public key in the access token) to sign the request

f. The resource server receives the message, retrieves the access token, uses the long term secret key K to extract the embedded key from the access token and verifies that the key used by the client matches the one included in the access token

· When symmetric key is used, the extracted session key is used to verify the keyed message digest of the request message

· When asymmetric key is used, the extracted public key is used to verify the attached signature
g. Resource server decides whether client can be provided to the protect resource or not.
[image: image5.emf]
[image: image6.emf]
Figures 1, 2 and 3 are from https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-00
It is also possible to use a “handle” type bearer token instead of a self-contained token. The resource server cannot autonomously make an authorization decision when receiving a request from a client but has to consult the authorization server. It queries the authorisation server for the client-specific key that was bound to the issued access token and used by the client to demonstrate proof-of-possession.
Following IETF drafts can be referred for more details on the proposed OAuth 2.0 Proof-of-Possession security mechanism:

1. https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-00 - OAuth 2.0 Proof-of-Possession (PoP) Security Architecture

2. https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-00 - OAuth 2.0 Proof-of-Possesion: Authorization Server to Client Key Distribution

3. https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-00 - A Method for Signing an HTTP Request for OAuth

4. https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-00 - Proof-Of-Possesion Semantics for JSON Web Tokens (JWTs)

3. Adopting OAuth 2.0 proof-of-possession in IMS_WebRTC

In OAuth 2.0, access tokens can be obtained via authorization grants. The core OAuth Specification defines four authorization grants. This section uses “Implicit” grant type, where the WebRTC IMS Client (WIC) is issued an access token directly, to demonstrate how OAuth 2.0 PoP can be applied to IMS WebRTC.
As described in [4] there are two ways for the OAuth client to demonstrate key-based proof-of-possesion:

1. When symmetric key is used, client uses authentication server-generated key to compute keyed message digest (MAC) of the REGISTER message and includes it in the message. The resource server (eP-CSCF) retrieves the session key, either from the self-contained access token or from the authorization server, and uses it as input to compute the MAC of the received message. It then compares the computed MAC with the received MAC, and determines whether the client is authorized to use the access token or not.
2. When Asymmetric key pair is used, client uses the private key to sign the message. This is then verified by the eP-CSCF using the corresponding public key available in the access token or fetched by quering the Authorization server
In the following sections we look at the following scenarios to show how PoP can be used in IMS WebRTC

1. When a self-contained token is used as access token with a symmetric key bound to it

2. When a handle-type token is used as access token with a symmetric key bound to it

3. When asymmetric key pair is used to bind a public key to the access token
a) PoP when a “self-contained” access token is used (JSON Web Token)

In this scenario, JSON Web Token (JWT) is used as access token.
[image: image7.emf]
b) PoP when “handle” type access token is used
[image: image8.emf]
c) PoP when an asymmetric key pair is used to bind the access token
[image: image9.emf]
4. Pseudo CR
*************************** BEGIN CHANGES 1*************************
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 41.001: "GSM Release specifications".

[3]
3GPP TR 21 912 (V3.1.0): "Example 2, using fixed text".
[4]
https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-00 : OAuth 2.0 Proof-of-Possesson (PoP) Security Architecture

[5]
https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-00 : OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key Distribution

[6]
 https://tools.ietf.org/html/draft-ietf-oauth-signed-http-request-00: A Method for Signing an HTTP Request for OAuth

[7]
https://tools.ietf.org/html/draft-ietf-oauth-proof-of-possession-00: Proof-Of-Possession Semantics for JSON Web Tokens (JWT)
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

*******************************END OF CHANGES 1 ****************************
****************************** BEGIN CHANGES 2 ******************************

6
Solutions

Editor’s Note: This clause will define potential security solutions.
6.x Authentication of WebRTC IMS Client using OAuth 2.0 Proof-of-Possession
According to RFC 6750 a bearer token is defined as “A security token with the property that any party in possession of the token (a “bearer”) can use the token in any way that any other party in posessesion of it can. Using a bearer token does not require a bearer to prove possession of cryptographic key material”

With the bearer token security mechanism, the resource server gets no assurance that the OAuth client presenting the bearer token is indeed authorized to do so, nor is it is possible for the OAuth client to prove that it is the rightful owner of the assertion. In other words the bearer token is not bound to a specific OAuth client and the OAuth client possessing the token is not expected to demonstrate proof of identity when using it to gain access with the resource server.

This leads to potential security and privacy threats as described in [4].
The WebRTC IMS Client (WIC) utilizing OAuth based Implicit grant to authenticate with the authorization server, is susceptible to an interception attack where a malicious client intercepts the access token returned from the authorization server and uses it to gain access to the protected resource.

OAuth 2.0 Proof-of-Possession security concept provides a mechanism to mitigate the threats identified by [4].
6.x.1 OAuth 2.0 Proof-of-Possession security architecture
In the OAuth 2.0 Proof-of-Possession security architecture, the authorization server acts as a trusted third party to the resource server. They both share a long-term secret key. The authorization server, in addition to generating the access token, also binds a cryptographic key (aka session key) to the generated access token. The session key is then provided to the client along with the access token. The session key is also made available to the resource server in two ways:

a) When a self-contained token (aka assertion tokens) is used, the session key is included in the access token.
b) When a handle-based token is used, the resource server queries the authorization server for the session key associated with the access token.
The session key is then used by the client to demonstrate to the resource server that it is authorized to use the access token and therefore be granted access to the protected resource.
The resource server, when receiving the access token, retrieves the access token from either the access token or by querying the resource server, and verifies that the session key used by the client matches the one associated with the access token. If the verification succeeds, the resource server is assured of the authenticity of the client and grants it access to protected resources.
6.x.2 Implicit grant based authentication with key-based Proof-of-Possession
This clause enhances Implict grant based authentication (Section 6.1.2.5 of 3GPP TR 33.871) with key-based proof-of-possession.
As described in [4] there are two ways for the OAuth client to demonstrate key-based proof-of-possesion:

1. When symmetric key is used to bind the token, client uses authentication server-generated key to compute keyed message digest (MAC) of the REGISTER message and includes it in the message. The resource server (eP-CSCF) retrieves the session key, either from the self-contained access token or from the authorization server, and uses it as input to compute the MAC of the received message. It then compares the computed MAC with the received MAC, and determines whether the client is authorized to use the access token or not.
2. When Asymmetric key pair is used, client uses private key to sign the message. This is then verified by the eP-CSCF using the corresponding public key available in the access token or fetched by quering the Authorization server.
[image: image10.emf]
The details of the signaling flows are as follows :

0. Client is registered with the Authorization server

Before a client application can request access to the protected resources of IMS subscriber, the client application must first register with the Authorization server associated with the resource server (IMS operator). The field client_type is set as public. A redirect URI is also registered with the server. This is the client’s redirection point used by the Authorization server to redirect the browser (user-agent) once the IMS subscriber is authenticated successfully.

In response, the Authorization server will assign a unique client ID to the registered client.

Step 0 is completed independently in advance of the following steps.

Note: It is assumed that the user has a web-based account with the Authorization Server.

1. Web page downloaded from WWSF

The user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The browser downloads and initializes WIC from the WWSF. WIC learns its client ID at this point.

Note: There may be a login step required in this step. This authenticates the resource owner with the WWSF.

2. User selects an IMS action from the web page

This redirects the IMS subscriber to the Authorization server. The client issues HTTP GET to request access token from the OAuth server. It includes its previously registered client ID and the redirect_uri in this request. It also includes response_type along with the scope (optional) and local state (optional) in this request. The fields response_type is set to ‘token’ as an indicator to the Authorization server that it should respond directly with the access token.
In addition, the client includes the following parameters specifically for proof-of-possession :

a) audience parameter (aud) - Identity of the resource server (eP-CSCF)
b) token_type = pop
c) alg = algorithm to use
In addition, when asymmetric key based PoP is used :
d) key = public key of the client (optional – authorization server can also generate an ephermeral key pair)
The user authenticates with the Authorization server and authorizes the WIC to access IMS communication services.

3. WIC gets the access token

The Authorization server generates an access token. It then binds a unique key with the access token as follows :
a. When symmetric key based PoP is used, it generates a fresh, unique session key and associates it with the access token.
b. When asymmetric key based PoP is used, it associates the public key received from the client (or generates an ephemeral key pair and uses the public key component) with the access token.
When self-contained token is used, the associated key (session key or public key) is inserted into the token and encrypted with the long term secret shared between the authorization server and resource server (eP-CSCF).
The Authorization server now redirects the user-agent back to the client web application using the redirection URI provided earlier. The redirection URI includes the access token in the URI fragment. When symmetric key based PoP is used, it also includes the generated session key. The user-agent (browser) will follow the redirect. The resulting HTML page will have the JavaScript code to parse the access token and the session key, if present, from the redirect URI.The user-agent passes the access token and the session key to the WIC.

The access token is associated with the authenticated user and client, and has a certain lifetime and scope. The associated authorization information such as the user IMPU/IMPI, WAF Id etc. can either be encoded into the token itself and verified through a signature or MAC (so called self-contained token), or retrieved as part of the validation response if the validation is performed against the WAF (Step 7 below).

4. Establishment of secure connection between WIC and eP-CSCF

The WIC opens a wss (secure web socket) connection to the eP-CSCF.

5. REGISTER request

The WIC sends a REGISTER request. This includes the access token which the WIC has previously obtained in step 3. The access token is included in the Authorization header in the REGISTER request.
To demonstrate possession of the key bound to the access token, the WIC does the following:

a) Applies the received session key (in step 3) to compute the keyed message digest (i.e., a symmetric key-based cryptographic primitive) and send it along with the REGISTER request or
b) Use the private key to compute a digital signature (i.e., an asymmetric cryptographic primitive) and send it along with the REGISTER request.
6. Validation of access token at eP-CSCF

The eP-CSCF extracts the access token from the incoming W2 message and verifies client’s PoP as follows :

a) When a self-contained token is used, it applies the long-term secret to decrypt and extract the key from the access token. It then verifies message digest or digital signature applied by the client.

b) When a handle-type token is used, eP-CSCF queries the authorization server over the W5 reference point for the session key.

Once the client is authenticated for PoP, the eP-CSCF validates access token – either locally in case of a self-contained token or by querying the authorization server over the W5 reference point.

Note : In case of a handle-type token, verification of PoP and validation of the token can be combined into one query – as depicted in the above figure.
7. IMS subscriber information retrieved from the Authorization server

If the access token is valid, the eP-CSCF obtains the session key and the associated IMS subscriber information including the IMPU and IMPI, the token expiry time token scope etc.
The eP-CSCF authenticates the WIC by verifying MAC (when symmetric key is used) or digital signature (when asymmetric key pair is used).
8. REGISTER request (eP-CSCF to IMS core)

Step 5 and beyond of the existing solutions for IMS WebRTC Scenarios 2 and 3 as specified in Annex X of TS 33.203 apply from this point onwards.
****************************** END CHANGES 2 ******************************

5. Conclusion

We kindly ask SA3 to agree to the discussion in this contribution and approve the pCR to TR 33.cde.
