3GPP TSG SA WG3 (Security) Meeting #77
S3-142510
17 Nov – 21 Nov, 2014; San Fransisco, USA
 revision of S3-14abcd
Source:
Alcatel-Lucent
Title:
pCR to TR 33.cde – TURN authentication using OAuth authorization framework
Document for:
Discussion and Approval
Agenda Item:
7.1.2 – Security Aspects of Web Real Time Communication (WebRTC) Access to IMS
Work Item / Release:
eWebRTCi/ Rel-13
Abstract of the contribution:

This paper proposes a pCR update to TR 33.cde with OAuth based authentication for TURN
1. Current authentication scheme for TURN
Session Traversal Utilities for NAT (STUN) [RFC 5389] specifies an authentication mechanism called the long-term credential mechanism. TURN [RFC 5766] specifies that TURN servers and clients MUST implement this mechanism.

As defined in RFC 5389, the long-term credential mechanism relies on a long-term credential, in the form of a username and password that are shared between the TURN server and client. The credential is provisioned for a user and remains till the user is using the system. A simple challenge-response paradigm is used by the server to authenticate the client.

The TURN client uses “Allocate” command to allocate a relayed transport address on the TURN server. The client sends an “Allocate” request to the server, and the server replies with an “Allocate” success response containing the allocated relayed transport address.

To begin with, the client sends an “Allocate” request to the server without credentials. The server rejects the request with an “Allocate” error response containing a 401 (Unauthorized) error code. The server provides realm and nonce values to the client in this message. The client now computes the message-integrity over the “Allocate” request message and retries “Allocate” request with nonce, message-integrity along with its credentials. The server validates the nonce and checks the message integrity. If they match, the server accepts the “Allocate” request and returns an “Allocate” success response containing the relayed transport address assigned to the allocation. In subsequent requests to the same server, the client reuses the nonce, username, realm, and password.

Section 17 of the TURN specification [RFC 5766] explains the importance of the long-term credential mechanism to mitigate various attacks. But there still security issues with it, especially when used in WebRTC, where ensuring secrecy of the credential is not possible.

“Problems with Session Traversal Utilities for NAT (STUN) Long-Term Authentication for Traversal Using Relays around NAT (TURN)” [RFC 7376] describes problems with using long-term authentication scheme for TURN.

To mitigate most of the issues arising due to the nature of the web applications, token based authentication using OAuth is proposed by IETF draft “draft-ietf-tram-turn-third-party-authz-05”.
2. OAuth 2.0 based authentication for TURN
In the mechanism proposed by J. Uberti & co. in “draft-ietf-tram-turn-third-party-authz-05”, the TURN client uses OAuth to obtain an ephemeral token and a secret session key from an authorization server. The token is presented to the TURN server instead of username/password credentials. The server validates the authenticity of the token and provides required services. In addition the secret key is used by the client to prove Proof-of-Possesion to the server.
The following are the salient features of the proposed mechanism in the IETF draft:

· Is based on OAuth 2.0 Proof-of-Possession (PoP) Security Architecture (draft-ietf-oauth-pop-architecture-00) and OAuth 2.0 Proof-of-Possesion: AS to Client Key Distrubution (draft-ietf-oauth-pop-key-distribution-00)
· Authorization server and TURN server share a long-term secret K. From this, two additional keys are derived:

· AS-RS key to encrypt the token

· AUTH key to ensure message integrity of the message

· Introduces two new TURN attributes:

· ACCESS-TOKEN : used by the client to forward the access token

· THIRD-PARTY-AUTHORIZATION: used by the TURN server to inform the client that it supports 3rd party authorization. It contains the TURN server name.
· Self-contained token is used to contain all the information necessary to authenticate the validity of the token. It is made up of two parts: Encrypted data and HMAC code.

· Encrypted data consists of a block of data encrypted with the AS-RS key. The data block contains the following parameters:

· Session key generated by the authorization server (mac_key)

· Lifetime of the access token (lifetime)

· Timestamp

· Key length in octects (key_length)

· HMAC code (mac) which is computed with the AUTH key over the Encrypted data and the TURN server name.

· Client is unaware of the contents of the token. It just forwards it to the TURN server in the “Allocate” request.
This is how the mechanism works:

a. Client begins by sending “Allocate” request without any credentials.

b. TURN server rejects the request and challenges the client to authenticate itself by sending “Allocate” error response with error code set to “401 Unauthorized”

c. Client initiates the OAuth process by sending Access Token request to the authorization server – this will contain “aud” parameter containing the TURN server name and “alg” specifiying the algorithm to use.

d. Once the client is authorized, the authorization server responds with an access token, the session key (i.e. mac_key) and the key id (in key_id)
e. The client now retries the “Allocate” request, this time including i) the access token in the ACCESS-TOKEN attribute, ii) key_id in the USERNAME attribute and iii) MESSAGE-INTEGRITY attribute containing the HMAC value computed over the the contents of TURN message with the session key (mac_key) used as the input key
f. The server receives the request and performs few key steps to authenticate the client:

a. Performs message integrity check on the access token using the AUTH key,

b. Using AS-RS key it decrypts the the encrypted_block and obtains the session key (mac_key),
c. Using mac_key it performs the message integrity check over the request and matches it with the contents of the MESSAGE-INTEGRITY attribute.

g. If all the checks pass, the server allocates a “relayed transport address” for the client and responds with the “Allocate” success response containing this address and the “server reflexive address” that indicates the address on the public side of the NAT.

Additional details of how TURN works can be found in RFC 5766. Detailed explanation of the proposed mechanism to use OAuth for TURN authentication can be found in the IETF draft “draft-ietf-tram-turn-third-party-authz-05.”.
3. Adopting OAuth based TURN client authentication in IMS_WebRTC

3.1 Background

In WebRTC, ICE protocol [RFC 5245] is used to interact with the TURN server and obtain a “relayed transport address” from it. This is one of the initial steps in the execution of ICE protocol.

In WebRTC, ICE agent implements ICE protocol. It is implemented by the browser and is tasked to finalize the candidate transport address (IP, port) for the WebRTC IMC Client (WIC) to use to send media stream to the peer WIC. The process of finalizing the candidate consists of various phases (in sequence):

· It begins with gathering candidate transport addresses - host candidates are gathered by quering the OS and external candidate addresses are gathered by communicating with STUN/TURN servers,

· Next these addresess are shared with the peer WIC using SDP Offer/Answer,

· Once peer candidate addresses are received (at both ends), each entity creates candidate pairs with one address from each WIC, and sorts them based on a pre-determined priority (as specified in RFC 5245),

· Finally, each entity initiates STUN connectivity checks from the local candidate to the remote candidate and picks the first pair that successfully completes connectivity check, as the local and remote addresses for the media stream.

As part of a WebRTC call setup, ICE Agent is created and configured with the TURN server details. The details include the usename and password to use for authenticating with the TURN server. When ICE Agent is in the processs of gathering all the candidates, it executes TURN protocol to obtain “relayed transport address” from the TURN server.

Following structure is used in WebRTC to configure TURN related information in ICE Agent [http://www.w3.org/TR/webrtc/]
Dictionary RTCIceServer {

 (DOMString or sequence<DOMString>) urls; // TURN URI

 DOMString username; // Username to use

 DOMString credential; // Credential (Password) to use

};

The WIC configures TURN client authentication information in ICE Agent using RTCIceServer.

3.2 Proposed authentication scheme using OAuth access tokens

OAuth based client authentication requires the following attributes to be configured by WIC:

a. Access token (which will be packaged in the ACCESS-TOKEN attribute of the Allocate request,

b. key_id (which will be packaged in the USERNAME attribute of the Allocate request

c. session key (mac_id) to be used by the ICE Agent to compute the MESSAGE-INTEGRITY attribute

For the purpose of this discussion paper, following assumption is made when OAuth is used for TURN client authentication:
· RTCIceServer will be enhanced with a a new field for Access token

· Existing field “username” will be used to configure the key_id

· Existing field “credential” will be used to configure the session key

The WIC will use this enhanced RTCIceServer to configure ICE Agent.

In the following section, OAuth Implicit grant is used in the WIC to obtain access token from the authorization server and configure WebRTC.

[image: image1.emf]
The details of the signalling flows are as follows:
0. Client is registered with the Authorization server

Before a client application can request access to the protected resource in TURN server, the client application (WIC) must first register with the Authorization server associated with the resource server. The field client_type is set as public. A redirect URI is also registered with the server. This is the client’s redirection point used by the Authorization server to redirect the browser (user-agent) once the subscriber is authenticated successfully.

In response, the Authorization server will assign a unique client ID to the registered client.

Step 0 is completed independently in advance of the following steps.

Note: It is assumed that the user has a web-based account with the Authorization Server.

1. User clicks on a button to make a WebRTC call

The user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The browser downloads and initializes WIC from the WWSF. WIC learns its client ID at this point. At some point in time the user clicks on a button to make a WebRTC call.
2. Request Access token

WIC starts the OAuth process. It issues HTTP GET to request access token from the OAuth server. It includes all the required parameters like registered client_id, TURN server name in the aud parameter etc.
3. User authentication and authorization

Authorization server authenticates the user and obtains user authorization from WIC setup a WebRTC call.
4. WIC gets the access token

Authorization server generates an access token and a session key. Access token is structured according to the format in section 2. It contains session key encrypted with the corresponding AS-RS key for the TURN server, and HMAC value of the encrypted portion of the token. The access token, session key and key identifier (kid) is returned back to the WIC.
5. Configure WebRTC

The WIC creates a WebRTC connection with RTCPeerConnection.

RTCPeerConnection is the WebRTC component (API) that handles stable and efficient communication of streaming data between peers. TURN server information is configured through this component.
6. WebRTC sends Allocate Request to TURN server
WebRTC sends an “Allocate” request to the server without credentials.
7. TURN server responds with Allocate Failure

Server requires that all requests be authenticated. If it supports third party authorization, it will reject the request with error code set to 401 (Unauthorized), a realm value in the REALM attribute, a nonce value in NONCE attribute and TURN Server name in the THIRD-PARTY-AUTHORIZATION attribute.
8. WebRTC retries Allocate Request

WebRTC re-attempts the “Allocate” request, this time including access token and kid values in ACCESS-TOKEN and USERNAME TURN message attributes. It also includes a MESSAGE-INTEGRITY attribute as the last attribute in the message. The HMAC for this attribute is computed over the contents of the message with the session key as the input. NONCE and REALM values are echoed back from step 7.
9. TURN server responds with Allocate Response

TURN server now verifies the request as described in section 2. If all the checks pass, the server allocates a “relayed transport address” for the client and responds with the “Allocate” success response containing this address in the XOR-RELAYED-ADDRESS. It will also return the “server reflexive transport address” in XOR-MAPPED-ADDRESS.

All communication between WIC and TURN server is now integrity protected with the session key.

4. Pseudo CR
*************************** BEGIN CHANGES 1*************************
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TR 41.001: "GSM Release specifications".

[3]
3GPP TR 21 912 (V3.1.0): "Example 2, using fixed text".
[4]
https://tools.ietf.org/html/draft-ietf-oauth-pop-architecture-00: OAuth 2.0 Proof-of-Possesson (PoP) Security Architecture

[5]
https://tools.ietf.org/html/draft-ietf-oauth-pop-key-distribution-00 : OAuth 2.0 Proof-of-Possession: Authorization Server to Client Key Distribution

[6]
https://tools.ietf.org/html/draft-ietf-tram-turn-third-party-authz-05: Session Traversal Utilities for NAT (STUN) Extension for Third Party Authorization
[7]
https://tools.ietf.org/html/rfc5766: Traversal Using Relays around NAT (TURN): Relay Extensions to Session Traversal Utilities for NAT (STUN)
…

[x]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

*******************************END OF CHANGES 1 ****************************
****************************** BEGIN CHANGES 2 ******************************

6
Solutions

Editor’s Note: This clause will define potential security solutions.
6.x TURN authentication using OAuth Access tokens
6.x.1 General

The TURN protocol [7] uses the long-term credential mechanism to authenticate and authorize the TURN client. As defined in RFC 5389, the long-term credential mechanism relies on a long-term credential, in the form of a username and password that are shared between the TURN server and client. The credential is provisioned for a user and remains till the user is using the system. A simple challenge-response paradigm is used by the server to obtain client credentials and authenticate the client.
Section 17 of the TURN specification [7] explains the importance of the long-term credential mechanism to mitigate various attacks. But according to [4], long-term credential mechanism is not suitable for use in WebRTC where ensuring secrecy of the credential is not possible.

To mitigate most of the issues arising due to the nature of the web applications, token based authentication using OAuth is proposed by [6]. In this proposal, the TURN client uses OAuth to obtain an ephemeral token and a secret session key from an authorization server. The token is presented to the TURN server instead of username/password credentials. The server validates the authenticity of the token and provides required services. In addition, the secret key is used by the client to prove Proof-of-Possesion to the server and to integrity protect the connection between TURN client and TURN server.
6.x.2 OAuth Implicit Grant based TURN Authentication in WebRTC
[image: image2.emf]
The details of the signalling flows are as follows:

0. Client is registered with the Authorization server

Before a client application can request access to the protected resource in TURN server, the client application (WIC) must first register with the Authorization server associated with the resource server. The field client_type is set as public. A redirect URI is also registered with the server. This is the client’s redirection point used by the Authorization server to redirect the browser (user-agent) once the subscriber is authenticated successfully.

In response, the Authorization server will assign a unique client ID to the registered client.

Step 0 is completed independently in advance of the following steps.

Note: It is assumed that the user has a web-based account with the Authorization Server.

1. User clicks on a button to make a WebRTC call

The user accesses a URI to the WWSF to initiate an HTTPS connection to the WWSF. The browser downloads and initializes WIC from the WWSF. WIC learns its client ID at this point. At some point in time the user clicks on a button to make a WebRTC call.
2. Request Access token

WIC starts the OAuth process. It issues HTTP GET to request access token from the OAuth server. It includes all the required parameters like registered client_id, TURN server name in the aud parameter etc.
3. User authentication and authorization

Authorization server authenticates the user and obtains user authorization from WIC setup a WebRTC call.
4. WIC gets the access token

Authorization server generates an access token and a session key. Access token is structured according to the format in [6]. It contains a unique session key encrypted with the corresponding AS-RS key for the TURN server, and HMAC value of the encrypted portion of the token. The access token, session key and key identifier (kid) is returned back to the WIC through browser re-direct.
5. Configure WebRTC

The WIC creates a WebRTC connection with RTCPeerConnection.

RTCPeerConnection is the WebRTC component (API) that handles stable and efficient communication of streaming data between peers. Following TURN related information is configured via this API - TURN Server URI, key id (as username), session key (as credential) and access token.
6. WebRTC uses TURN to obtain “relayed transport address” on the TURN server

Note: This step is executed by WebRTC API inside the browser and is outside the scope of 3GPP.
The WebRTC API executing inside the browser uses TURN protocol [7] and TURN extensions for third party authorization [6] to allocate and obtain “relayed transport address” from the TURN server. The client uses access token and session key to authenticate itself with the server.
All communication between WIC and TURN server is now integrity protected with the session key.
5. Conclusion

We kindly ask SA3 to agree to the analysis of this contribution and approve the pCR to TR 33.cde.
