3GPP TSG SA WG3 (Security) Meeting #77

S3-142480
San Francisco, USA, 17 – 21 November 2014

Source:
Ericsson

Title:
Discussion of legal interception requirements for end-to-end WebRTC-IMS security
Document for:
Approval

Agenda Item:
7.1 - IP Multimedia Subsystem (IMS) Security
Work Item / Release:
eWebRTCi/ Release 13
Abstract of the contribution: This contribution raises the question whether an end-to-end WebRTC security solution should be investigated in Rel-13 of the WebRTC-IMS interoperability study since such a solution might violate possible legal interception requirements
1 Introduction
Currently, WebRTC IMS clients only support e2ae security as described in TS 33.203 Rel-12. The Rel-13 WID on enhancements to WebRTC-IMS interoperability states as objectives:
"Requirements to provide end-to-end support for specific WebRTC capabilities at the bearer level (e.g., WebRTC IMS client to WebRTC IMS client communication) will reduce the need for protocol conversions between WebRTC and IMS protocols on the data channel."

"Support for end to end WebRTC security, subject to regulatory constraints, that avoids conversion between WebRTC and IMS security protocols”.

Before starting to deeply investigate end-to-end (e2e) WebRTC security, it should be clarified whether such an e2e solution interferes with possible Legal Interception (LI) requirements.
2 Analysis
The WebRTC client (WIC) consists of a browser, running a JavaScript based web-application. This application is downloaded from and controlled by a WebRTC Web Server Function (WWSF). If the WWSF is owned by the IMS operator it is therefore likely that the operator will have LI requirements, also in the case of e2e WebRTC security. If the WWSF is third party owned, LI requirements for the operator are still probable since usually there is some kind of trust relationship established between operator and third party.
Given that the operator would have LI requirements when using e2e WIC communication, there are two possible solutions to deal with these requirements in that case:
2.1 Solution 1: Use of standard browsers

If standard browsers are used in the WICs, a LI node has to be inserted somewhere on the media path in order to facilitate LI. TLS_RSA cipher suites would enable such a LI node to retrieve the DTLS session key by acting as a man-in-the-middle during the DTLS handshake, and then transparently forwarding the DTLS record layer and the SRTP packets. However, TLS_RSA ciphers are in most cases not supported by standard browsers. This is because the WebRTC standard (https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-10) mandates clients to prefer cipher suites with perfect forward secrecy (i.e. Diffie-Hellman) and the choice of offered cipher suites is not controllable by JavaScript.

When using TLS_DHE ciphers it is not possible for a LI node to act as undetected man-in-the-middle during the DTLS handshake, since the two end points would end up with different keys. Thus, the clients could detect that they are under LI by comparing their DTLS session keys, which does not fulfil the LI requirements. An LI node is therefore likely forced to terminate DTLS. Assuming that both the originating and terminating operator needs to perform LI, both operators need to terminate DTLS. As a result, the architecture would look just like today’s end-to-access-edge (e2ae) solution.
2.2 Solution 2: Operator provided browsers
If the operator would provide a browser to the end user that enables LI, then it could be argued that all normal browsers are ‘modified clients’ for which the operator would not have any LI requirements.

There are 3 ways to allow for LI in this case:
1. The operator provided browser could only apply NULL encryption. Thus, LI would always be possible when the WIC uses this browser.
2. The operator provided browser could mandate a TLS_RSA cipher suite without Diffie-Hellman. This would allow a LI node to act as undetected man-in-the-middle during the DTLS handshake and retrieve the session key.
3. The operator provided browser could use a TLS_DHE cipher suite and send the negotiated keys to a LI node. Therewith, e2e communication without conversion between WebRTC and IMS security protocols would be achieved while still allowing for LI.
3 Conclusion
If solution 1 is applied, then the operator needs to terminate DTLS for all WebRTC IMS interworking calls. If encryption between the operators is optimized away, the architecture looks just like today’s e2ae solution. So given that WebRTC IMS client access to IMS falls under LI requirements and standard browsers should be used, there is likely nothing to be done when it comes to the media security architecture. Performance benefits in Rel-13 might still be achieved by eliminating transcoding and other processing on the decrypted packages.
If solution 2 is applied, then there would be a need to discuss an e2e solution in Rel-13.
Before starting to deeply investigate e2e WebRTC security, it should be clarified whether such an e2e solution interferes with possible LI requirements. It is proposed to send a LS to SA3-LI to clarify the following issues:

· Do (and what kind of) LI requirements apply to the case of using e2e encryption when the WWSF is owned by the IMS operator and when the WWSF is owned by a third party (given that the DTLS-SRTP key material is generated by the WIC)?

· Feedback on the solutions above.

4 pCR

BEGIN CHANGES

6
Solutions

Editor’s Note: This clause will define potential security solutions.

6.1
Solutions to support for end to end WebRTC security that avoids conversion between WebRTC and IMS security protocols

If the WWSF is owned by the IMS operator it is likely that the operator will have LI requirements, also in the case of e2e WebRTC security. If the WWSF is third party owned, LI requirements for the operator are still probable since there is usually some kind of trust relationship established between operator and third party.

Given that the operator would have LI requirements when using e2e WIC communication, there are two possible solutions to meet these requirements in that case:
4.1 Solution 1: Use of standard browsers

If standard browsers are used in the WICs, a LI node has to be inserted somewhere on the media path in order to facilitate LI. TLS_RSA cipher suites would enable such a LI node to retrieve the DTLS session key by acting as a man-in-the-middle during the DTLS handshake, and then transparently forwarding the DTLS record layer and the SRTP packets. However, TLS_RSA ciphers are in most cases not supported by standard browsers. This is because the WebRTC standard (https://tools.ietf.org/html/draft-ietf-rtcweb-security-arch-10) mandates clients to prefer cipher suites with perfect forward secrecy (i.e. Diffie-Hellman) and the choice of offered cipher suites is not controllable by JavaScript.

When using TLS_DHE ciphers it is not possible for a LI node to act as undetected man-in-the-middle during the DTLS handshake, since the two end points would end up with different keys. Thus, the clients could detect that they are under LI by comparing their DTLS session keys, which does not fulfil the LI requirements. An LI node is therefore likely forced to terminate DTLS. Assuming that both the originating and terminating operator needs to perform LI, both operators need to terminate DTLS. As a result, the architecture would look just like today’s end-to-access-edge (e2ae) solution from a security standpoint.
Thus, if solution 1 is applied, then there is likely nothing to be done when it comes to the media security architecture. Performance benefits in Rel-13 might still be achieved by eliminating transcoding and other processing on the decrypted packages.
4.2 Solution 2: Operator provided browsers

If the operator would provide a browser to the end user that enables LI, then it could be argued that all normal browsers are ‘modified clients’ for which the operator would not have any LI requirements.

There are 3 ways to allow for LI in this case:
4. The operator provided browser could only apply NULL encryption. Thus, LI would always be possible when the WIC uses this browser.
5. The operator provided browser could mandate a TLS_RSA cipher suite without DH. This would allow an LI node to act as undetected man-in-the-middle during the DTLS handshake and retrieve the session key.
6. The operator provided browser could use a TLS_DHE cipher suite and send the negotiated keys to a LI node. Therewith, e2e communication without conversion between WebRTC and IMS security protocols would be achieved, while still allowing for LI.
If solution 2 is applied, then there would be a need to discuss an e2e solution in Rel-13.
Editor's Note: LI requirements need to be clarified with SA3-LI.

END OF CHANGES
