Page 1

3GPP TSG-SA3 Meeting #76
S3-142219
Sophia Antipolis,France 25-29 August 2014

revision of S5-140abc
	CR-Form-v11

	CHANGE REQUEST

	

	
	33.303
	CR
	CRNum
	rev
	-
	Current version:
	12.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:

	[ProSe]: CR: KMS Provisioning Message Formats for media security

	
	

	Source to WG:
	CESG (UK Gov)

	Source to TSG:
	S3

	
	

	Work item code:
	REL12/PROSE
	
	Date:
	2014-08-18

	
	
	
	
	

	Category:
	C
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)

	
	

	Reason for change:
	In the ProSe specification, a message flow for KMS provisioning to support UE-to-UE media security is defined but this does not include any detail of the format of these messages. This is required for Stage 3 work on ProSe to be completed.

	
	

	Summary of change:
	This change provides a Annex to the document which details the request and response messages between a UE and KMS to provision keys to support media security over a ProSe interface.

	
	

	Consequences if not approved:
	The interface between the UE and KMS will not be defined as part of ProSe Stage 3 in Release 12. Hence it will not be possible to provision keys to support media security over a ProSe interface.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

*******************FIRST CHANGE******************************

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

-
References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

-
For a specific reference, subsequent revisions do not apply.

-
For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 23.303: "Proximity-based services (ProSe); Stage 2".

[3]
3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".

[4]
3GPP TS 33.310: "Network Domain Security (NDS); Authentication Framework (AF)".

[5]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture (GBA)".

[6]
ETSI TS 102 225: "Smart Cards; Secured packet structure for UICC based applications".

[7]
ETSI TS 102 226: "Smart cards; Remote APDU structure for UICC based applications".

[8]
3GPP TS 31.115: "Secured packet structure for (Universal) Subscriber Identity Module (U)SIM Toolkit applications".

[9]
3GPP TS 31.116: "Remote APDU Structure for (U)SIM Toolkit applications ".

[10]
IETF RFC 3550: "RTP: A Transport Protocol for Real-Time Applications".

[11]
IETF RFC 3711: "The Secure Real-time Transport Protocol (SRTP)".

[12]
IETF RFC 6509: "MIKEY-SAKKE: Sakai-Kasahara Key Encryption in Multimedia Internet KEYing (MIKEY)".

[13]
IETF RFC 3830: "MIKEY: Multimedia Internet KEYing".

[14]
IETF RFC 6507: "Elliptic Curve-Based Certificateless Signatures for Identity-Based Encryption (ECCSI)".

[15]
NIST FIPS 186-4: "Digital Signature Standard (DSS)".

[16]
BSI TR-03111: "Technical Guideline TR-03111; Elliptic Curve Cryptography".

[17]
IETF RFC 5639: "Elliptic Curve Cryptography (ECC) Brainpool Standard; Curves and Curve Generation".

[18]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".

[19]
IETF RFC 5280: "Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile".

[20]
NIST FIPS 180-4: "Secure Hash Standard (SHS)".

[21]
3GPP TS 33.401: "3GPP System Architecture Evolution (SAE); Security architecture".
[ee]

IETF RFC 3261: "SIP: Session Initiation Protocol".

[ff]
IETF RFC 6508: "Sakai-Kasahara Key Encryption (SAKKE)".
[gg]
IETF RFC 5480: "Elliptic Curve Cryptography Subject Public Key Information".
[hh]
IETF RFC 6090: "Fundamental Elliptic Curve Cryptography Algorithms".

[ii]
IETF RFC 3339: "Date and Time on the Internet: Timestamps".
[nn]
IETF RFC 5905: "Network Time Protocol Version 4: Protocol and Algorithms Specification".
*******************END OF FIRST CHANGE******************************

*******************SECOND CHANGE******************************
6.2.4.3.4
Provisioning request

This procedure registers a Public Safety UE within a specific domain. The Public Safety UE shall send a provisioning request to the KMS. Upon successful request, the KMS shall return indication of success and provisioning material.

It is assumed that this request is made and responded to over an established secure connection as described in clause 6.2.4.3.3. Figure 6.2.4.3.4-1 describes the procedure.

 SHAPE * MERGEFORMAT

Figure 6.2.4.3.4-1: KMS provisioning process

The provisioning shown in Figure 6.2.4.3.4-1 is as follows:

1. The Public Safety UE shall send a provisioning request to the KMS.

2. The KMS shall check that the request is valid and shall ensure the Public Safety UE's identity is verified and apply the domain policy on assigning user identities to the UE.

3. After successful processing, the KMS returns a provisioning response to the Public Safety UE. The KMS populates the response with all information required to provision the UE. The contents of response may be signed by the KMS. The response includes key material corresponding to the user identity associated with UE. It may also include information relating to KMS domains, cross-domain communications and groups.

Details of provisioning requests may be found in Annex AA.

*******************END OF SECOND CHANGE******************************

*******************THIRD CHANGE******************************

Annex AA (Normative):
KMS provisioning messages to support media security

AA.1
General aspects

This Annex specifies the key management procedures between the KMS and the UE that allows the UE to be provisioned to use media security. It describes the requests and responses for the following provisioning messages:
· KMS Initialise

· KMS KeyProvision

· KMS CertCache

All KMS communications are made via HTTP(S). The UE is provisioned via XML content in the KMS’s response. The XML content is designed to be extendable to allow KMS/client providers to add further information in the XML. Where the interface is extended, a different XML namespace should be used (so that may be ignored by non-compatible clients).

It is assumed that transmissions between the KMS and the UE are secure and that the KMS has authenticated the identity of the UE.

AA.2
KMS requests

Requests to the KMS are made to specific resource URIs. Resource URIs are rooted under the tree “/keymanagement/identity/v1” for a particular domain. For example: “http://example.org/keymanagement/identity/v1/init” is the resource path to initialise a user within the domain “example.org”.

To make a ‘KMS Initialise’ request the UE shall make a HTTP POST request to the subdirectory "init” i.e. Request-URI takes the form of "/keymanagement/identity/v1/init".

To make a ‘KMS KeyProvision’ request the UE shall make a HTTP POST request to the subdirectory "keyprov” i.e. Request-URI takes the form of "/keymanagement/identity/v1/keyprov".

Optionally, the Request-URI of the POST request may contain a specific user or group URI which the UE would like the KMS to provision. The URI shall be within a subdirectory of ‘keyprov’. For example, the user URI ‘user@example.org’ is provisioned via a request to: "/keymanagement/identity/v1/keyprov/user%40example.org". Additionally, if the Request-URI contains a specific URI, the client may also request a specific time which the client would like the KMS to provision. The time URI shall be the same time as used in the MIKEY payload, a NTP-UTC 64-bit timestamp as defined in RFC 5905 [nn]. For example, if the user required keys specifically for 23rd Feb 2014 at 08:39:14.000 UTC, the request would be: “/keymanagement/identity/v1/keyprov/user%40example.org/D6B4323200000000”.

To make a ‘KMS CertCache’ request the UE shall make a HTTP POST request to the subdirectory "certcache”. For example, the request-URI takes the form of "/keymanagement/identity/v1/certcache". If a cache has been previously received, the request URI may optionally be directed to the subdirectory indicating the number of the client’s latest version of the cache. For example, the request-URI takes the form of "/keymanagement/identity/v1/certcache/12345".

AA.3 KMS responses

This section defines the HTTP responses made by the KMS to the three KMS requests. The KMS attaches XML content to the HTTP responses. The XML serves to provision the client based upon its request.

The header format of the XML content is the same for each request, though each response carries differing content within a ‘KMSMessage’ tag. There are two types of XML content provided by the KMS within the ‘KMSMessage’ tag; KMS Certificates and (private) user Key Set provisioning.

In response to a ‘KMS Initialise’ request, the KMS shall respond with the KMS’s own certificate (the Root KMS certificate) within a ‘KMSInit’ tag.

In response to a ‘KMS KeyProvision’ request, the KMS shall provision appropriate user Key Sets within a ‘KMSKeyProv’ tag.

In response to a ‘KMS CertCache’ request, the KMS shall provision a cache of KMS certificates allowing inter-domain communications within a ‘KMSCertCache’ tag.

AA.3.1
KMS Certificates
AA.3.1.1
Description

A KMS Certificate is a certificate that applies to an entire domain of users. A Certificate consists of XML containing the information required to encrypt messages to a domain of users and verify signatures from the domain of users.

It is assumed that the UE is managed by a single KMS, the UE’s Root KMS. This Root KMS is the only KMS which provisions the UE. The KMS certificate of the Root KMS is known as the Root KMS certificate. This certificate is required to encrypt to the UE, and verify signatures of UE (as well as others within the domain).

The Root KMS may also provision a number of external KMS certificates to allow inter-domain communications.

AA.3.1.2
Fields
The KMS Certificate shall be within a XML tag named ‘KmsCertificate’. This type shall have the following subfields:

	Name
	Description

	Version
	(Attribute) The version number of the certificate type (1.0.0)

	Role
	(Attribute) This shall indicate whether the certificate is a ‘Root’ or ‘External’ certificate.

	CertUri
	The URI of the Certificate (this object).

	KmsUri
	The URI of the KMS which issued the Certificate.

	Issuer
	(Optional) String describing the issuing entity.

	ValidFrom
	Date from which the Certificate may be used.

	ValidTo
	Date at which the Certificate expires.

	Revoked
	A Boolean value defining whether a Certificate has been revoked.

	UserIDFormat
	A string denoting how MIKEY-SAKKE UserIDs should be constructed. If the routine in Section AA.3.1.4 is used, the tag should have the attribute ‘Conversion’ set to “Hash”.

	PubEncKey
	The SAKKE Public Key, ‘Z’, as defined in [ff]. This is an OCTET STRING encoding of an elliptic curve point.

	PubAuthKey
	The ECCSI Public Key, ‘KPAK’ as defined in [14]. This is an OCTET STRING encoding of an elliptic curve point.

	KmsDomainList
	List of domains with which the certificate may be used.

	
	

Note that a KMS may serve multiple domains. However, each domain may have at most one KMS.

AA.3.1.3
User IDs

To secure communications with a specific user, the initiator must compose the User Identifier (UID) to which the message will be encrypted. RFC 6509 [12] defines a UID format, however this is limited in terms of flexibility.

Instead, the KMS defines the UID format for its users within the KMS Certificate. This allows flexibility on the choice of UID depending on the requirements of the specific user group. The only constraint is that UID must be well-defined and derived by the initiator of the communication unambiguously.

For example, if communications occur within an IMS framework, the UID is likely to contain the user’s IMS Public identity, IMPU (e.g. user@example.org), or in other contexts, perhaps the MSISDN. For most domains, the UID used for communications will contain a reference to the current year, and also the current month or week within the year. This defines the length of time a particular UID is used, and also the key period for the key associated with the User ID.

AA.3.1.4
Constructing the UserID from a KMS certificate.

The string ‘UserIDFormat’ within the certificate contains the rules for generating the UserID based upon the user’s URI, the KMS URI, the current year, the current month, current week and the current day of the year. It is assumed that the user’s URI must be a SIP URI as defined in RFC 3261 [ee].

If the user’s URI is a tel URI, the URI is first converted to a SIP URI. There are a number of ways that this conversion may be performed. Either the SIP infrastructure may perform the conversion, and refer the client to the correct URI, or the client may convert the tel URI as stated in Section 19.1.6 of RFC 3261 [ee], using a default SIP domain.

AA.3.1.4.1
The ‘Hash’ UserID Conversion

The string ‘UserIDFormat’ must contain at least one occurrence of the substrings ‘#uri’ or ‘#user’ and must contain the substring ‘#year’.

The UserID is constructed as follows:

1. Initially, the UserID is set to be the UserIDFormat string.

2. Where UserID contains the substring ‘#uri’, this substring is replaced with the NAI-part (user@host) of user’s URI as defined in Section 19.1.1 of RFC 3261 [ee].

3. Where UserID contains the substring ‘#user’, this substring is replaced with the ‘user’ component of user’s URI as defined in Section 19.1.1 of RFC 3261 [ee].

4. Where UserID contains the substring ‘#host’, this substring is replaced with the ‘host’ component of user’s URI as defined in Section 19.1.1 of RFC 3261 [ee].

5. Where UserID contains the substring ‘#parameters’, this substring is replaced with the ‘uri-parameters’ component of user’s URI as defined in Section 19.1.1 of RFC 3261 [ee].

6. Where UserID contains the substring ‘#kms’, this substring is replaced with KMS URI.

7. Where UserID contains the substring ‘#year’, this substring is replaced with the current ‘date-fullyear’ as specified in Section 5.6 of RFC 3339 [ii].

8. Where UserID contains the substring ‘#month’, this substring is replaced with the current ‘date-month’ as specified in Section 5.6 of RFC 3339 [ii].

9. Where UserID contains the substring ‘#week’, this substring is replaced with the current ‘date-week’ as specified in Section 5.6 of RFC 3339 [ii].

10. Where UserID contains the substring ‘#yday’, this substring is replaced with the current ‘date-yday’ as specified in Section 5.6 of RFC 3339 [ii].

11. The resulting string is interpreted as an ASCII string and used as the User Identifier (UserID) as discussed in Section 3.2 of RFC 6509 [12].

The UserIDFormat shall not contain the ‘#’ symbol, except to denote one of the above substrings.
AA.3.1.4.2
Example UserID Construction

If a user with SIP URI: ‘sip:alice@example.org’ is the receiver, the KMS Certificate containing the domain ‘example.org’ is used. Assume the KMS Certificate uses the UserIDFormat:

#uri?P-Year=#year&P-Month=#month
The UserID for user with SIP URI: ‘sip:alice@example.org’ during September 2013 is constructed as:

user@example.org?P-Year=2013&P-Month=09
As another example, of a process for converting tel URIs, assume the user has tel URI: ‘tel:+358-555-1234567;postd=pp22’, and is in default domain ‘example.org’. Then the UserID may be constructed by first converting the tel URI to a SIP URI:

sip:+3585551234567@example.org
then constructing the UserID as follows (for Sept 2013):

+3585551234567@example.org?P-Year=2013&P-Month=09
AA.3.1.5
Signing using ECDSA and the Root KMS Certificate

The KMS may use its Root KMS Certificate as a public certificate to sign information.

Signatures are performed using ECDSA-SHA256. The domain parameters shall be the P256 elliptic curve and base-point [FIPS186-3]. The KMS private key shall be ‘KSAK’ as defined in [ECCSI], the public key shall be the ‘PubAuthKey’ as provided with the KMS Certificate (‘KPAK’ as defined in [ECCSI]).

Where the Certificate is implicitly known, the KMS may sign information by referencing the CertUri rather than including the entire Certificate.

AA.3.2
User Key Provision

AA.3.2.1
Description

User keys are private information associated to a user’s identity (UserID) which allow a user to decrypt information encrypted to that identity and sign information as that identity. User keys are provisioned as XML containing the key information required and associated metadata.

AA.3.2.2
Fields

The KMS shall provision keys within an XML tag named ‘KmsKeySet’. This shall have the following subfields:

	Name
	Description

	Version
	(Attribute) The version number of the key provision XML (1.0.0)

	KmsUri
	(Optional) The URI of the KMS which issued the key set.

	CertUri
	(Optional) The URI of the Certificate which may be used to validate the key set.

	Issuer
	(Optional) String describing the issuing entity.

	UserUri
	(Optional) URI of the user for which the key set is issued.

	UserID
	UserID corresponding to the key set.

	ValidFrom
	(Optional) Date and time from which the key set may be used.

	ValidTo
	(Optional) Date and time at which the key set expires.

	Revoked
	(Optional) A Boolean value defining whether the key set has been revoked.

	UserDecryptKey
	The SAKKE ‘Receiver Secret Key’ as defined in [ff]. This is an OCTET STRING encoding of an elliptic curve point as defined in Section 2.2 of [gg].

	UserSigningKeySSK
	The ECCSI private Key, ‘SSK’ as defined in [14]. This is an OCTET STRING encoding of an integer as described in Section 6 of [hh].

	UserPubTokenPVT
	The ECCSI public validation token, ‘PVT’ as defined in [14]. This is an OCTET STRING encoding of an elliptic curve point as defined in Section 2.2 of [gg].

	
	

AA.3.3
Example KMS Response XML

AA.3.3.1
Example KMSInit XML

<?xml version="1.0" encoding="UTF-8"?>

<KmsResponse xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns = "NamespaceToBeDefined" xsi:schemaLocation = "NamespaceToBeDefined IdentityKmsResponse.xsd" Id = "xmldoc" Version = "1.0.0">

 <KmsUri>kms.example.org</KmsUri>

 <UserUri>user@example.org</UserUri>

 <Time>2014-01-26T10:05:52</Time>

 <KmsId>KMSProvider12345</KmsId>

 <ClientReqUrl>http://kms.example.org/keymanagement/identity/v1/init</ClientReqUrl>

 <KmsMessage>

 <KmsInit Version = "1.0.0">

 <KmsCertificate Version = "1.0.0" Role = "Root">

 <CertUri>cert1.kms.example.org</CertUri>

 <KmsUri>kms.example.org</KmsUri>

 <Issuer>www.example.org</Issuer>

 <ValidFrom>2000-01-26T00:00:00</ValidFrom>

 <ValidTo>2100-01-26T23:59:59</ValidTo>

 <Revoked>false</Revoked>

 <UserIdFormat Conversion="Hash">#uri?P-Year=#year&P-Month=#month</UserIdFormat>

 <PubEncKey>(OCTET STRING)</PubEncKey>

 <PubAuthKey>(OCTET STRING)</PubAuthKey>

 <KmsDomainList>

 <KmsDomain>sec1.example.org</KmsDomain>

 <KmsDomain>sec2.example.org</KmsDomain>

 </KmsDomainList>

 </KmsCertificate>

 </KmsInit>

 </KmsMessage>

</KmsResponse>
AA.3.3.1
Example KMSKeyProv XML

<?xml version="1.0" encoding="UTF-8"?>

<KmsResponse xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns = "NamespaceToBeDefined" xsi:schemaLocation = "NamespaceToBeDefined IdentityKmsResponse.xsd" Id = "xmldoc" Version = "1.0.0">

 <KmsUri>kms.example.org</KmsUri>

 <UserUri>user@example.org</UserUri>

 <Time>2014-01-26T10:07:14</Time>

 <KmsId>KMSProvider12345</KmsId>

 <ClientReqUrl>http://kms.example.org/keymanagement/identity/v1/keyprov</ClientReqUrl>

 <KmsMessage>

 <KmsKeyProv Version = "1.0.0">

 <KmsKeySet Version = "1.0.0">

 <KmsUri>kms.example.org</KmsUri>

 <CertUri>cert1.kms.example.org</CertUri>

 <Issuer>www.example.org</Issuer>

 <UserUri>user@example.org</UserUri>

 <UserID>user@example.org?P-Year=2014&P-Month=02</UserID>

 <ValidFrom>2014-01-31T00:00:00</ValidFrom>

 <ValidTo>2014-03-01T23:59:59</ValidTo>

 <Revoked>false</Revoked>

 <UserDecryptKey>(OCTET STRING)</UserDecryptKey>

 <UserSigningKeySSK>(OCTET STRING)</UserSigningKeySSK>

 <UserPubTokenPVT>(OCTET STRING)</UserPubTokenPVT>

 </KmsKeySet>

 <KmsKeySet Version = "1.0.0">

 <KmsUri>kms.example.org</KmsUri>

 <CertUri>cert1.kms.example.org</CertUri>

 <Issuer>www.example.org</Issuer>

 <UserUri>user.psuedonym@example.org</UserUri>

 <UserID>user.psuedonym@example.org?P-Year=2014&P-Month=02</UserID>

 <ValidFrom>2014-01-31T00:00:00</ValidFrom>

 <ValidTo>2014-03-01T23:59:59</ValidTo>

 <Revoked>false</Revoked>

 <UserDecryptKey>(OCTET STRING)</UserDecryptKey>

 <UserSigningKeySSK>(OCTET STRING)</UserSigningKeySSK>

 <UserPubTokenPVT>(OCTET STRING)</UserPubTokenPVT>

 </KmsKeySet>

 </KmsKeyProv>

 </KmsMessage>

</KmsResponse>
AA.3.3.1
Example KMSCertCache XML
<?xml version="1.0" encoding="UTF-8"?>

<KmsResponse xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns = "NamespaceToBeDefined" xsi:schemaLocation = "NamespaceToBeDefined IdentityKmsResponse.xsd" Id = "xmldoc" Version = "1.0.0">

 <KmsUri>kms.example.org</KmsUri>

 <UserUri>user@example.org</UserUri>

 <Time>2014-01-26T10:14:12</Time>

 <KmsId>KMSProvider12345</KmsId>

 <ClientReqUrl>http://kms.example.org/keymanagement/identity/v1/certcache</ClientReqUrl>

 <KmsMessage>

 <KmsCertCache Version = "1.0.0">

 <SignedKmsCertificate>

 <KmsCertificate Version = "1.0.0" Role = "External">

 <CertUri>cert2.kms.example.org</CertUri>

 <KmsUri>kms.example.org</KmsUri>

 <Issuer>www.example.org</Issuer>

 <ValidFrom>2000-01-26T00:00:00</ValidFrom>

 <ValidTo>2100-01-26T23:59:59</ValidTo>

 <Revoked>false</Revoked>

 <UserIdFormat Conversion="Hash">#uri?P-Year=#year&P-YDay=#yday</UserIdFormat>

 <PubEncKey>(OCTET STRING)</PubEncKey>

 <PubAuthKey>(OCTET STRING)</PubAuthKey>

 <KmsDomainList>

 <KmsDomain>sec3.example.org</KmsDomain>

 </KmsDomainList>

 </KmsCertificate>

 <Signature xmlns = "http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm = "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm = "http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256"/>

 <Reference URI = "#xmlcache">

 <DigestMethod Algorithm = "http://www.w3.org/2001/04/xmlenc#sha256"/>

 <DigestValue>nnnn</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>DEADBEEF</SignatureValue>

 <KeyInfo>

 <KeyName>cert1.kms.example.org</KeyName>

 </KeyInfo>

 </Signature>

 </SignedKmsCertificate>

 <SignedKmsCertificate>

 <KmsCertificate Version = "1.0.0" Role = "External">

 <CertUri>cert1.kms.another.example.org</CertUri>

 <KmsUri>kms.another.example.org</KmsUri>

 <Issuer>www.another.example.org</Issuer>

 <ValidFrom>2000-01-26T00:00:00</ValidFrom>

 <ValidTo>2100-01-26T23:59:59</ValidTo>

 <Revoked>false</Revoked>

 <UserIdFormat Conversion="Hash">#uri?P-Year=#year&P-YDay=#yday</UserIdFormat>

 <PubEncKey>(OCTET STRING)</PubEncKey>

 <PubAuthKey>(OCTET STRING)</PubAuthKey>

 <KmsDomainList>

 <KmsDomain>another.example.org</KmsDomain>

 </KmsDomainList>

 </KmsCertificate>

 <Signature xmlns = "http://www.w3.org/2000/09/xmldsig#">

 <SignedInfo>

 <CanonicalizationMethod Algorithm = "http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

 <SignatureMethod Algorithm = "http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256"/>

 <Reference URI = "#xmlcache">

 <DigestMethod Algorithm = "http://www.w3.org/2001/04/xmlenc#sha256"/>

 <DigestValue>nnnn</DigestValue>

 </Reference>

 </SignedInfo>

 <SignatureValue>DEADBEEF</SignatureValue>

 <KeyInfo>

 <KeyName>cert1.kms.example.org</KeyName>

 </KeyInfo>

 </Signature>

 </SignedKmsCertificate>

 </KmsCertCache>

 </KmsMessage>

</KmsResponse>
AA.3.4
KMS Response XML Schema

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd = "http://www.w3.org/2001/XMLSchema" xmlns:ds = "http://www.w3.org/2000/09/xmldsig#" xmlns = "NamespaceToBeDefined" targetNamespace = "NamespaceToBeDefined" elementFormDefault = "qualified" version = "1.0">

 <xsd:import namespace = "http://www.w3.org/2000/09/xmldsig#" schemaLocation = "xmldsig-core-schema.xsd"/>

 <xsd:element type = "KmsResponseType" name = "KmsResponse"/>

 <xsd:complexType name = "KmsResponseType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:anyURI" name = "UserUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:dateTime" name = "Time" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "KmsId" minOccurs = "0" maxOccurs = "1"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 <xsd:element type = "xsd:anyURI" name = "ClientReqUrl" maxOccurs = "1"/>

 <xsd:element name = "KmsMessage" maxOccurs = "1" minOccurs = "0">

 <xsd:complexType>

 <xsd:choice maxOccurs = "1" minOccurs = "0">

 <xsd:element type = "KmsInitType" name = "KmsInit"/>

 <xsd:element type = "KmsKeyProvType" name = "KmsKeyProv"/>

 <xsd:element type = "KmsCertCacheType" name = "KmsCertCache"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:choice>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element type = "xsd:string" name = "KmsError" minOccurs = "0" maxOccurs = "1"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsInitType">

 <xsd:sequence>

 <xsd:choice maxOccurs = "1">

 <xsd:element type = "SignedKmsCertificateType" name = "SignedKmsCertificate"/>

 <xsd:element type = "KmsCertificateType" name = "KmsCertificate"/>

 </xsd:choice>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsKeyProvType">

 <xsd:sequence>

 <xsd:element type = "KmsKeySetType" name = "KmsKeySet" minOccurs = "0" maxOccurs = "unbounded"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "KmsCertCacheType">

 <xsd:sequence>

 <xsd:choice maxOccurs = "unbounded" minOccurs = "0">

 <xsd:element type = "SignedKmsCertificateType" name = "SignedKmsCertificate"/>

 <xsd:element type = "KmsCertificateType" name = "KmsCertificate"/>

 </xsd:choice>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:attribute name = "CacheNum" type = "xsd:integer"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "SignedKmsCertificateType">

 <xsd:sequence>

 <xsd:element name = "KmsCertificate" type = "KmsCertificateType"/>

 <xsd:element ref = "ds:Signature" minOccurs = "0"/>

 </xsd:sequence>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:element name = "KmsCertificate" type = "KmsCertificateType"/>

 <xsd:complexType name = "KmsCertificateType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "CertUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "Issuer" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:dateTime" name = "ValidFrom" maxOccurs = "1"/>

 <xsd:element type = "xsd:dateTime" name = "ValidTo" maxOccurs = "1"/>

 <xsd:element type = "xsd:boolean" name = "Revoked" maxOccurs = "1"/>

 <xsd:element type = "UserIdFormatType" name = "UserIdFormat" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "PubEncKey" maxOccurs = "1"/>

 <xsd:element type = "xsd:string" name = "PubAuthKey" maxOccurs = "1"/>

 <xsd:element name = "KmsDomainList" maxOccurs = "1">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsDomain" maxOccurs = "unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:attribute name = "Role" type = "RoleType"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

 <xsd:complexType name = "UserIdFormatType">

 <xsd:simpleContent>

 <xsd:extension base = "xsd:string">

 <xsd:attribute name = "Conversion" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 <xsd:simpleType name = "RoleType">

 <xsd:restriction base = "xsd:string">

 <xsd:enumeration value = "Root"/>

 <xsd:enumeration value = "External"/>

 </xsd:restriction>

 </xsd:simpleType>

 <xsd:complexType name = "KmsKeySetType">

 <xsd:sequence>

 <xsd:element type = "xsd:anyURI" name = "KmsUri" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:anyURI" name = "CertUri" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "Issuer" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:anyURI" name = "UserUri" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "UserID" maxOccurs = "1"/>

 <xsd:element type = "xsd:dateTime" name = "ValidFrom" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:dateTime" name = "ValidTo" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:boolean" name = "Revoked" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "UserDecryptKey" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "UserSigningKeySSK" maxOccurs = "1" minOccurs = "0"/>

 <xsd:element type = "xsd:string" name = "UserPubTokenPVT" maxOccurs = "1" minOccurs = "0"/>

 <xsd:any namespace = "##other" processContents = "lax" minOccurs = "0" maxOccurs = "unbounded"/>

 </xsd:sequence>

 <xsd:attribute name = "Id" type = "xsd:string"/>

 <xsd:attribute name = "Version" type = "xsd:string"/>

 <xsd:anyAttribute namespace = "##other" processContents = "lax"/>

 </xsd:complexType>

</xsd:schema>
*******************END OF THIRD CHANGE*****************************

KMS

1. Provisioning Request

3. Provisioning Response

Response may contain:

Key material corresponding to UE’s UIDs.

KMS public certificate.

KMS public certificates of other domains.

Domain Policies.

Key material corresponding to UIDs of any groups the UE can create.

UE

2. Verification of user’s identity and provision User IDs according to domain policy

